
CHAPTER 7

OBJECTS AND CLASSES

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

2

OBJECTIVES

After completing “Objects and Classes,” you will be able to:

 Explain the use of classes in Java for representing structured
data.

 Distinguish between objects and classes.

 Describe how Java classes support encapsulation through
member data and methods.

 Use the public and private access specifiers in Java programs.

 Explain the use of the new operator to instantiate objects
from classes.

 Describe the use of references in Java and explain the role of
garbage collection.

 Use constructors to initialize your objects.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

3

Structured Data

 Java defines primitive data types that are built into the
language.

 Data types such as int, double, and boolean can be used to
represent simple data.

 Java provides the class mechanism to represent more complex
forms of data.

 Through a class you can build up structured data out of simpler
elements.

public class Product
{
 String description;
 double price;
}

 Product is now a new data type.

 A product has a description (e.g. “Airplane toy”) and a price (e.g.
2.55).

 The Java libraries predefine many classes that you can use in
your programs.

 String, although not a primitive data type, is predefined for you in
the standard Java library.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

4

Classes and Objects

 A class represents a “kind of” or type of data.

 It is analogous to the built-in types like int and double.

 A class can be thought of as a template from which individual
instances can be created.

 When you create a class, you are only creating a definition .

 An instance of a class is called an object.

 Just as you can have several individual integers that are instances
of int, you can have several products that are instances of Product.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

5

References

 There is a fundamental distinction between the primitive data
types and the extended data types that can be created using
classes.

 When you declare a variable of a primitive data you are
allocating memory and creating the instance.

int x; // 4 bytes of memory have been allocated

 When you declare a variable of a class type (an “object
variable”), you are only obtaining memory for a reference to
an object of the class type.

 No memory is allocated for the object itself, which may be quite
large.

Product p;
// p is a reference to a Product object
// The object itself does not yet exist

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

6

Instantiating and Using an Object

 You instantiate an object with the new operator.
p = new Product (); // a Product object now exists
 // and p is a reference to it

 Once an object exists you work with it, including accessing its
data members (or “fields”) and methods.

 Our simple Product example at this point has no methods, only
two data members.

 You access data members and methods using a dot (normally you
will not access data members directly – they are usually “private”).

p.description = "Airplane toy";
p.price = 2.55; // values have now been assigned

p "Airplane toy"

2.55

 Before the object exists, its object reference is null.

 You can test for an object reference being null.
if (p != null)
{
 // OK to assign values
 p.description = "Airplane toy";
 p.price = 2.55;
}

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

7

Assigning Object Variables

 Consider a second object variable referencing a second object.
Product q = new Product();
q.description = “Beanie baby”;
q.price = 15.66

q "Beanie baby"

15.66

 When you assign an object variable you are only assigning the

reference, there is no copying of data.
q = p; // q now refers to same object p does

q "Beanie baby"

15.66

p "Airplane toy"

2.55

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

8

Garbage Collection

 Through the assignment of a reference, an object may become
orphaned.

 Such an orphan object (or “garbage”) takes up memory in the
computer which can now never be referenced.

 “Beanie baby” is now garbage.

q "Beanie baby"

15.66

p "Airplane toy"

2.55

 The Java Virtual Machine automatically reclaims the memory

of unreferenced objects.

 This process is known as garbage collection.

 Garbage collection takes up some execution time, but it is a great
convenience for programmers, helping to avoid a common
program error known as a “memory leak”.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

9

Programming a Class

 To program a class in Java do the following:

 Enter the class definition in a file.

 The file should have the same name as the class with the extension
.java.

 Make the class public in order to be able to use it in other classes.

 Declare fields, which are like variables but they exist for the life of
each object of the class, rather than just for the duration of a
method invocation.

 Example program shows definition and use of a simple
Product class.

 See Product_Step0.
public class Product
{
 String description;
 double price;
}

EXAMPLE

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

10

Default Values

 Notice that you do not need to initialize fields, though you can
if you so choose.

 If you don’t, the compiler will assign a default value, which is
essentially the “zero representation” appropriate to the data
type of the field.

 The following table shows the default value for the primitive
data types:

Type Default

boolean false
char \u0000
byte 0
short 0
int 0
long 0L
float 0.0f
double 0.0

 Object references default to null.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

11

Using a Class

 To use a class:

 Declare a reference to the class and instantiate an object instance
by new (can be done on the same line).

 Access members (and methods) by using the dot notation.

 See Product_Step0.
public class TestProduct
{
 public static void main(String[] args)
 {
 Product p1 = new Product();
 Product p2 = new Product();
 Product q;
 p1.description = "Airplane toy";
 p1.price = 2.50;
 p2.description = "Beanie baby";
 p2.price = 15.66;
 q = p1;
 System.out.println(q.description + " " +
 q.price);
 q = p2;
 System.out.println(q.description + " " +
 q.price);
 }
}

EXAMPLE

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

12

Methods

 Typically a class will specify behavior as well as data.

 A class encapsulates data and behavior in a single entity.

 A method consists of:

 An access specifier, typically public or private.

 A return type (can be void if the method does not return data).

 A method name, which can be any legal Java identifier.

 A parameter list, enclosed by parentheses, which specifies data that
is passed to the method (can be empty, if no data is passed).

 A method body, enclosed by curly braces, which contains the Java
code that the method will execute.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

13

Methods

 Example:

 The return type is void (no data is passed back).

 The method name is adjustPrice.

 The parameter list consists of a single parameter of type double.

 The body contains one line of code that increments the member
variable price by the value that is passed in.

public void adjustPrice(double p)
{
 price += p;
}

 Example:

 The return type is double (data of type double will be passed
back).

 The method name is getPrice.

 There are no parameters.

 The body contains one line of code that returns the current value
of member variable price.

public double getPrice()
{
 return price;
}

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

14

Public and Private

 Data members and methods of a Java class can be specified as
public or private.

 Normally you declare data members as private.

 A private member can only be accessed from within the class, not
from outside.

 Methods may be declared as either public or private.

 Public methods are called from outside the class and are used to
perform calculations and to manipulate the private data.

 You may also have private methods, which can be thought of as
“helper functions” for use within the class (rather than duplicating
code several places, you may create a private method, which will be
called wherever it is needed).

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

15

Abstraction

 Our Product class captures the essential features of a product,
suppressing unnecessary details.

 There are many possible features of a product, but for our purposes
the only essential things are its description and its price.

 All instances of the Product class share these common
features.

 This helps us deal with complexity.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

16

Encapsulation

 Encapsulation is an important feature of Object Orientation.

 The implementation of a class should be hidden from the rest
of the system, or encapsulated.

 Objects have a public and a private side.

 Public side is what the rest of the system knows, while private
side implements the public side.

 Data itself should be private and only accessible through

methods with a public interface.

 There are two kinds of protection:

 Internal data is protected from corruption.

 Users of the object are protected from changes in the
representation.

price

description

adjustPrice

Product p

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

17

Constructors

 Another important issue for classes is initialization.

 When an object is created, what initial values are assigned to the
instance data?

 Through a constructor you can initialize an object in any way
you wish.

 Besides initializing instance data you can perform other
appropriate initializations (e.g. open a file).

 A constructor is like a special method which is automatically
called when an object is created.

 A constructor has no return type.

 A constructor has the same name as the class.

 A constructor may take parameters, which are passed when
invoking new.

 public Product(String d, double p)
 {
 description = d;
 price = p;
 }

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

18

A Product Class

 Another version of the Product class illustrates the features we
have been discussing.

 See Product_Step1.
public class Product
{ // constructor
 public Product(String d, double p)
 {
 description = d;
 price = p;
 }
 public void adjustPrice(double p)
 { // method increments the price by p
 price += p;
 }
 public double getPrice()
 { // method retrieves the price
 return price;
 }
 public String getDescription()
 { // method retrieves the description
 return description;
 }
 public String toString()
 { // method converts to string
 return String.format("%s $%,1.2f",
 description, price);
 }
 private String description;
 private double price;
}

EXAMPLE

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

19

A Product Class

public class TestProduct
{
 public static void main(String[] args)
 {
 Product p1, p2, p3;
 p1 = new Product("Airplane toy", 2.50);
 // uses constructor
 p1.adjustPrice(.50); // uses method
 p2 = new Product("Beanie baby", 15.66);
 p3 = new Product("Cat carrier", 5.50);
 // uses constructor
 System.out.println(p1.toString());
 System.out.println(p2.toString());
 System.out.println(p3.toString());
 // conversion to string
 System.out.println(p3);
 // implicit conversion
 }
}

 Try it out:
compile
run TestProduct
Airplane toy $3.00
Beanie baby $15.66
Cat carrier $5.50
Cat carrier $5.50

EXAMPLE

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

20

The toString Method

 It is often useful to define a toString method in your class.

 This method should return a String value that represents the
current object instance.

 toString is known to Java.

 If an object reference is used when a String reference is expected,
your object will be converted to a String using the toString
method.

 For example, the println method expects a String parameter, and
a Product variable will be converted to a String variable using the
toString method.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

21

Formatted Output

 Java provides a simple means of formatting output to a stream.

 This is a feature long known in the C language, and to some it has
been conspicuous by its absence in Java.

 The System.out object offers a method format.

 The format method takes a formatting string as its first parameter,
and then any number of objects after that.

System.out.format ("%8d %s%n", 77, "Hello");

 The call shown above produces the following – note the leading
spaces to observe an eight-character “width” for the numeric
argument:

 77 Hello

 The String class offers a format method as well.

 It takes the same parameters, but instead of producing the results
to the console it returns a formatted string object.

String representation =
 String.format ("%8d %s%n", 77, "Hello");

 This provides a means of capturing formatted presentations and
passing them around between objects.

public String toString ()
{
 return String.format ("(%d, %d)", x, y);
}

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

22

Formatting Strings

 The formatting string passed to format consists of literal text
and fields.

 Each field in the string must correspond to an argument passed
to the method – with a few exceptional field types that produce
special characters and don’t need a value to be provided.

 Common field types are

 %d, which formats an integer

 %s, which formats a string

 %f, which formats a floating-point number

 %n, which produces an end-of-line sequence appropriate for the
runtime operating system

 Most fields can be modified in a few simple ways:

 A number preceding the one-letter field code defines the field
width, which is a minimum number of characters to be produced
by the field.

 A hyphen preceding the number indicates the field will be left-
justified, where right-justified is the default, if a width has been
specified – even for strings.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

23

Formatting Examples

 The following pairs of lines show the Java code to format
certain values and the resulting output:

System.out.format ("%d %s %s%n",
 77, "Hi", "there");
77 Hi there

System.out.format ("%4d %8s %8s%n",
 77, "Hi", "there");
 77 Hi there

System.out.format ("%4d %-8s %-8s%n",
 77, "Hi", "there");
 77 Hi there

System.out.format ("%-16s $%,8.2f",
 "Dog bone", 70);
Dog bone $ 70.00(and no line break!)

System.out.format ("The value is $%,-1.2f.", 70);
The value is $70.00.

 Formatted output is simple to use, but for many purposes it is
still simpler and easier to simply print or println.

 Formatted output is especially helpful in establishing regular
widths for fields, and in justifying the output text, so that
columns of values are neatly aligned for the reader of the
output.

 We will use a combination of the two practices in the rest of our
code examples and exercises.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

24

Using a Money Class

Suggested time: 60 minutes

In this lab you will create a Money class that can be used to hold
and display currency values. The Money class will encapsulate
formatting logic, hiding this detail from the rest of the program.

Detailed instructions are found at the end of the chapter.

LAB 7

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

25

SUMMARY

 Classes are used in Java for representing structured data.

 An object is an instance of a class.

 Java classes support encapsulation through private member
data and public methods.

 The new operator is used to instantiate objects from classes.

 Java uses references to refer to objects.

 An object without a reference represents unused memory,
which will be cleaned up by garbage collection.

 Constructors are used to initialize objects.

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

26

Using a Money Class

Introduction

In this lab you will create a Money class that can be used to hold and display currency
values. The Money class will encapsulate formatting logic, hiding this detail from the rest
of the program.

Directories: Money_Step0 (Exercise 1 work)
 Money_Step1 (Intermediate answer)
 Money_Step2 (Exercise 1 answer)
 Product_Step1 (Exercise 2 work)
 Product_Step2 (Exercise 2 answer)

Instructions

Exercise 1. Creating a Money Class

Create a file src/Money.java that defines a class to encapsulate storing and displaying a
currency value. You are supplied a test program src/TestMoney.java that can be used to
exercise your class. Your class should have the following features:

A private data member price of type double that is used as the internal representation.

A constructor that initializes price from a double parameter that is passed in.

An implementation of the standard toString method that returns a string representation
of a double used for currency value. Use String.format to get a currency
representation that includes two digits to the right of the decimal point, and includes
comma separators every three digits to the left of the decimal point. (See the final
example of formatted output for the exact formatting field to use.) (This is the Step1
intermediate answer, and the one that’s used in the next exercise.)

run TestMoney
$2.55
$15.50
$5,000.00

Optionally, try to make TestMoney produce clean columns of numbers, with the decimal

points lined up. How about “%,6.2f” as a field, to accommodate up to 6-figure values?
It doesn’t quite work! If this is confusing, note that the digit to the left of the decimal
point in a formatting field specifies the minimum width of the total field output – that
is, including commas, decimal point, and digits to the right. So six as a width only
allows for six character columns – not enough to accommodate the string “$5,000.00”
without breaking alignment. Try “%,10.2f” and see that you do get clean output, like
this (and this is the Step2 final answer):

LAB 7

Introduction to Java Programming Chapter 7

© 1999-2014 Object Innovations.
All rights reserved.

27

run TestMoney
$ 2.55
$ 15.50
$ 5,000.00

Exercise 2. Using the Money Class in the Product Class

In this exercise you will replace the internal representation of price in the Product class.
You will use Money as the type of price in place of double. The external interface
remains the same, so all calling programs should run unchanged. The Step1 version of
Money.java has been placed in the src directory for this exercise. Try to make all the
remaining changes on your own. If you get stuck you can refer to the following detailed
list of the changes that you should make to src/Product.java:

1. In the definition of the private data member price replace the type double by Money.

2. Modify the constructor to initialize price by instantiating a new Money object.

3. Modify the getPrice method to return a Money.

4. Simplify the implementation of toString to use the toString method of Money. Note
that you can get particularly elegant code by relying on Java to automatically convert a
Money object to a String object, implicitly using the toString method of Money.

5. Try to compile the program. You will find an error in adjustPrice, because the
operator += cannot be applied to the Money type. Go back to the Money class and
implement a new method adjust which adds a double value to the internal price. Use
this adjust method in adjustPrice.

6. You should now be able to run the test program src/TestProduct.java without
making any changes.

As a final enhancement you can simplify the test program by printing out all the string
representations of products using the implicit invocation of toString of Product class –
i.e. just call System.out.println(p1), etc.

