
CHAPTER 6

JSP EXPRESSIONS AND THE JSTL

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

2

OBJECTIVES

After completing “JSP Expressions and the JSTL,” you will be able to:

• Describe the use of the JSP expression language in writing
simple expressions to produce page content.

• Write JSP expressions and implement JSPs that use them in
favor of script expressions and scriptlets.

• Describe the role of the JSP Standard Tag Library in JSP
development.

• Implement JSPs that use basic JSTL actions to simplify
presentation logic.

• Compare script-driven authoring with scriptless authoring
that uses the EL and JSTL, and make well-informed decisions
as to which style to employ in your own JSP development.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

3

Going Scriptless

• As we discussed in the previous chapter, it’s best in large-scale
application design to minimize the amount of business logic in
front-line JSPs.

• JavaBeans and standard actions are a good start, but (as we also
discussed) the standard action syntax is unwieldy, especially
when performing a simple chore such as getting a bean
property value.

• The JSP 2.0 expression language, or EL, offers a minimal
syntax for reading information out of an object or graph of
objects.

− The EL realizes the vision of dynamic page development in which
page authors can quickly and simply invoke application behaviors
and derive necessary values for pages, without letting a lot of Java
code creep onto the page.

− JSP expressions do what script expressions were meant to do, but
since they don’t rely on Java, they are much simpler, and in their
own way more powerful.

• In support of JSP expressions, the JSP Standard Tag Library,
or JSTL, provides some simple custom actions for basic
processing logic and formatting.

− JSTL tags (or perhaps “JSTs”) can replace much of what JSP 1.2
developers had to do in scriptlets.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

4

The JSP Expression Language

• In fact, the expression language was first conceived in support
of the JSTL, rather than the other way around.

− EL can be used in attribute values of JSTs.

− The JSTL specification lays out a prototypical EL, but cedes the
ultimate responsibility for its grammar to JSP.

− EL can be used on its own in a page supported by a JSP 2.0
container – the container will translate it at request time.

− When used as an argument to a JST, the expression can be
evaluated by the tag handler, or the container can do it –
depending mostly on the container version.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

5

Using JSP Expressions

• JSP expressions are always of the general form
${expression}, and can be embedded directly in JSP template
content:

<p>The value of myBean’s name property is
 ${myBean.name}.</p>

• They can be passed to a JST in attribute values:
<fmt:formatDate value="${thatJob.completion}"
 ... />

− In both cases, expressions can be intermingled with static text, and
multiple expressions can appear in sequence.

<c:set var="x"
 value="Signal ${n} level: ${level}dB" />

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

6

EL Syntax

• The expression language is so simple to use that it’s a little
tricky to explain!

− Most of the syntax is highly intuitive.

− EL borrows elements from ECMAScript and XPath.

− It will also look familiar to Java programmers, although there are
some important differences in how certain operators are evaluated.

• Remember that the EL is “native” to JSP, and although it will be
interpreted and translated to Java code in practice, it is not
specifically bound to Java or to any other programming
language.

• We’ll look at some of the major grammatical elements on the
next few pages:

− Type model

− Literal values

− Variables

− Arithmetic operators

− Indexing/member operators

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

7

Type Model and Literal Values

• The JSP expression language supports the following types –
these are not Java types per se:

− Boolean

− Integer

− Floating-point number

− String

− Object

• Ultimately, though, everything in EL is an object.

− There are no “primitive” types.

• Literal values can be stated for all of these types:

− “true” and “false” are boolean literals.

− Integer literals are recognized in tokens that start with a digit and
don’t conclude with or embed a decimal point; a leading plus or
minus sign is also legal.

− Floating-point literals are like integer literals but can include a
decimal point and exponentials (“5.4e-09”, e.g.).

− Any quoted string of characters can form a string literal. Either
single or double quotes may be used, and one can be successfully
embedded in the other. Either can also be escaped, as in "He said,
\"Hello!\"".

− The token null is a literal indicating the absence of a value.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

8

Variables

• The evaluator will treat anything it can’t recognize as being a
literal or an operator as a variable.

• Variables are referenced by name in expressions.

− The EL’s variable is what script elements know as an object
reference, and an expression will always be referring to objects in
the same four web scopes we’ve seen in earlier chapters: page,
request, session, and application.

− Page scope is assumed when evaluating an expression.

− Other scopes can be derived using implicit objects – more on this
in a moment.

− There is no question of defining a scope for a new object, since the
EL cannot create objects.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

9

Indexing/Member Operators

• To read a property of an object, use the “.” operator.

− This is a lot like the <jsp:getProperty> action, where the
variable before the dot is the bean and the token after the dot is a
property name.

− That is, the following constructs are conceptually equivalent:
${A.B}
<jsp:getProperty name="A" property="B" />

• To read an indexed property, use the “[]” operator.

− Standard actions can’t do this!

− The expression before the brackets must be a collection, or must be
an indexed property on another object.

− The expression in the brackets might be a numeric index into the
collection or property, or might be any other type – the container
will simply pass the value to the appropriate accessor method.

− There are two primary usages here:
${myCollection[5]}
${myBean.myIndexedProperty[3]}

− Note in the second case that the expression
myBean.myIndexedProperty would not be legal by itself.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

10

Indexing/Member Operators

• Either the dot or bracket operators can be chained together,
and nested.

${yourBean.location.path}
${this["that"].member.collection[4]}
${param[preferences.keyParameter]}

• There’s also an overlap in what you can do with dot and bracket
operators.

− To wit, the following two expressions are equivalent, for any object
reference A and any property name B:

${A.B}
${A["B"]}

− This follows a lead from ECMAScript.

− Note however that only the bracket operators can get a property
name dynamically, as in:

${A[somePropertyName]}

− ... and there is no dot syntax that does this.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

11

Arithmetic and Logical Operators

• EL supports basic arithmetic and logical operators, much like
Java, ECMA, and XPath.

− In fact, its operator set is very nearly the superset of operators
from those languages.

− Note the redundancies in the following lists.

− Arithmetic operators are:
+ - * / div % mod

− Logical operators are:
&& and || or ! not

• Operator precedence is about as expected; consult the JSP 2.0
specification for the exact order.

• Parentheses may be used to promote an expression to be
evaluated before another.

${x * (y + z)}

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

12

The empty Operator

• Since EL does not provide for method invocation, only for
property reads, it needs a specific syntax to check the size of a
collection.

− If the collection type supports a property such as count or size,
then that can easily be called.

− However, the Java collection classes (such as Vector) do not
uniformly support any such property, and the EL doesn’t provide a
means of calling the size method.

• What EL does provide is a means of testing for emptiness of a
collection: this is the empty operator.

− This is a unary prefix operator, so empty A evaluates to true if A
is either null or a collection with no elements.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

13

EL Functions

• The expression language also supports a function-calling
syntax.

• This is not object-oriented, as one might first expect.

• It supports calling C-style functions in a flat API, rather than
member functions on a specific object.

• Functions are implemented as static methods on Java classes
which are packed into tag libraries.

− We’ll look more closely at tag libraries in the following chapter. To
invoke a function in a given tag library, import the library with a
<%@ taglib %> directive.

− Invoke the function by writing its qualified name followed by a
parenthesized list of arguments, separated by commas.

<%@ taglib prefix="my" uri="someURI" %>
...
${my:formatOutput (part1, part2)}
<c:set var="value"
 value="${my:getSomeValue (5, x, y)}" />

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

14

Type Coercion

• EL is a weakly typed language.

− That is, there is no declaration of the type of any expression,
variable, sub-expression, etc.

− There is no explicit type-casting, as there is in Java.

• Thus EL evaluation works from the outside in.

• In this way the evaluator can determine the expected type of an
expression before evaluating it.

• The expression’s value will then be coerced to the appropriate
type.

− This can be as simple as a number being converted to its string
representation, or vice-versa.

− Not every value can be successfully coerced to every type.

• For the most part, type coercion is transparent to the
expression author, and a great deal of casting and conversion
code is quietly left at the roadside.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

15

Error Handling

• Part of the philosophy behind the EL is that it is to be used in
presentation code, and that in that context it’s typically best to
produce an incomplete result than to fail completely on a
recoverable error or warning.

• When evaluation of an expression or sub-expression fails, a
default value will be provided by the evaluator for the
required type, and expression evaluation will continue from
there.

− Default values are empty strings and zero values.

− Thus a common result while an expression is still in development
and debugging is no output at all.

• This can make EL tricky to debug: sometimes we can’t tell the
difference between an expression that just didn’t turn up a
result and one that’s mistyped!

• You will see “hard failures” in the form of exceptions in at least
two other cases:

− Syntax errors in your expression (that is, not just the wrong name
for a bean property, but basic syntax problems such as ${A[B})

− Exceptions thrown from Java code that might be invoked as part
of evaluating the expression

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

16

Implicit Objects

• As with script elements, the EL relies on a set of implicit objects
provided by the JSP container.

• The set is not exactly the same as that for scripting elements.

• The full set is shown on the following page.

− Like the scripting object set, there are redundancies – objects that
could be derived from other implicit objects.

− In fact, there is probably a higher degree of redundancy in the EL
set – and a correspondingly higher level of convenience in
coding.

− For example, headers, cookies, and initialization parameters
are all available as simple maps, which are easy to dereference
using dot/bracket notation, as in
${cookie["customerName"]}.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

17

List of Implicit Objects

• Implicit objects for JSP expressions:

Name Description

pageContext The PageContext object

pageScope Map of page-scope object references

requestScope Map of request-scope object references

sessionScope Map of session-scope object references

applicationScope Map of application-scope object references

param Map of request parameters – name to single value

paramValues Map of request parameters – name to array of all
values

header Map of headers – name to single value

headerValues Map of headers – name to array of all values

cookie Map of pertinent cookies – name to Cookie

initParam Map of initialization parameters – name to
Object

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

18

Echo in EL

• In Examples\Echo\EL\Echo.jsp, the Echo application from
earlier in the module has been rewritten to use a JSP
expression:

<html>

<head>
 <title>Echo -- Using JSP Expressions</title>
</head>

<body bgcolor="#F8F8E8" >

 <center>
 <h2>Echo — Using JSP Expressions</h2>
 </center>

 <p>Welcome, ${param["name"]}!</p>

</body>

</html>

EXAMPLE

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

19

The JSP Standard Tag Library

• Prior to the development of JSP 2.0, custom tag library
development for JSPs was thriving and maturing.

• A number of libraries have emerged that have nearly universal
applicability to JSP authoring tasks.

• Chief among these is a set that has been adopted and
formalized under the JCP as the JSP Standard Tag Library,
or JSTL.

− These actions are so common that it is recommended that JSP
containers provide native support for them.

− Until containers do so, JSTL implementations can be deployed on
a per-application basis, just like any custom tag library.

− In this module’s exercises, we’re using a JSTL implementation
from Apache, extracted from the Jakarta Taglibs project.

• As EL borrows heavily from XPath (along with ECMAScript),
JSTL can be seen to be guided in large part by the design of
XSLT.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

20

JSTL Namespaces

• The JSTL consists of four distinct tag libraries, each with its
own namespace (naturally), and each with a suggested prefix.

− The namespace is prescribed by the JSTL specification.

− The prefix is ultimately up to the page author, as per the usual
rules for JSP custom tag libraries. The page author chooses the
prefix in the taglib directive.

• The four tag libraries that make up the JSTL are:
Name Prefix Namespace URI
Core c: http://java.sun.com/jsp/jstl/core

Formatting fmt: http://java.sun.com/jsp/jstl/fmt

SQL sql: http://java.sun.com/jsp/jstl/sql

XML x: http://java.sun.com/jsp/jstl/xml

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

21

Using JSTL in a Page

• To bring any of the four JSTL libraries into play in a JSP, one
needs to take a few steps to inform the container how to
translate an action into the corresponding Java code.

− Any action will have a prefix and a name, and then any number of
attributes.

<c:forEach var="x" items="${myCollection}" > ...

− The page must include a taglib directive that maps prefix to URI.
<%@ taglib prefix="c"
 uri="http://java.sun.com/jsp/jstl/core" %>

− This URI must be mapped by a tag library descriptor, or TLD, to
various tag handlers for each tag in the library.

− The TLD may be declared explicitly in web.xml, or it may be
found automatically in the META-INF directory of any JAR file
deployed in WEB-INF\lib.

− The Java class must be available to the container at runtime, which
typically means that a JAR including the class will be deployed
with the application, under WEB-INF\lib.

• The JSTL reference implementation is deployed as part of our
web application.

− You can see the files jstl.jar and standard.jar under
Application/WEB-INF/lib.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

22

The Core Actions

• We’ll consider just a few of the JSTL actions in this chapter.

• Our purpose for the moment is not to learn the JSTL in depth,
but rather:

− To learn its role in JSP authoring, especially as it can assist
widespread use of the JSP expression language

− To develop a general familiarity with its syntax and common
usage, so as to be able to recognize it where it occurs

• For these purposes, we’ll study just two of the core actions

− <c:set>

− <c:if>

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

23

Modifying Information with <c:set>

• The core library includes one action in particular that’s very
helpful in conjunction with JSP expressions: the <c:set>
action.

• Remember that EL cannot write values into objects; it can only
read and produce them to the output stream.

• <c:set> provides the basic ability to declare page-scope
variables, and to initialize and to modify their values.

<c:set var="var-name"
 scope="scope" value="new-value" />

• It is not too different from <jsp:useBean>, but:

− It cannot define the Java class of a new variable, as
<jsp:useBean> can; the variable type can only be determined
implicitly based on value expression.

− It can initialize a variable to a value – something like
<jsp:useBean> and <jsp:setProperty> in one step.

− Some of the attributes of <c:set> can include JSP expressions.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

24

Conditional Processing with <c:if>

• Another convenient core action is <c:if>, which includes
other JSP content (static or dynamic) and processes it only if a
test expression evaluates to true.

<c:if test="${param['a'] == param['b'] and
 param['a'] == param['c']}">
 <td>Sphere</td>
</c:if>

• A more complex combination of three other core actions is
required to get an if/else or switch/case structure.

− The actions are <c:choose>, <c:when>, and
<c:otherwise>.

<c:choose>
 <c:when test="${x % 2 == 0}" >even</c:when>
 <c:otherwise>odd</c:otherwise>
</c:if>

− We’ll keep it simple in exercises in this chapter, and stick to
<c:if>.

− A crude but effective way to get if/else behavior is simply to write
two <c:if> actions with opposite tests.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

25

Odd and Even

In this lab you will re-implement the Odd and Even application
using JSP expressions and conditional logic based in JSTL tags.

Detailed instructions are contained in the Lab 6A write-up at the
end of the chapter.

Suggested time: 30 minutes.

LAB 6A

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

26

Using Beans with JSTL

• The one major limitation of the core action set is that it offers
no way to instantiate new objects.

− <c:set> can find an existing object at a given scope and initialize
it.

− It can declare a new variable at any scope, but there is no way to
define the type of the variable.

− Thus only common types such as strings and numbers can be
instantiated; specific application-defined classes cannot be
specified.

• The philosophy behind this intentional omission is that other
components, such as servlets, should be choosing the types of
objects, and populating them.

• If a JSP needs to create objects, it can use <jsp:useBean>, and
the resulting objects will be visible to EL and to JSTs.

• Another common behavior for which the JSTL does not provide
is adding an element to a collection.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

27

The Formatting Actions

• A second library under the JSTL provides for formatted output,
localization and internationalization.

− <fmt:setLocale> sets a default locale for other formatting
actions, at any chosen scope.

− <fmt:setTimeZone> accomplishes the same thing for time
zones.

− Various actions in this library will format or parse dates and times
under this locale and time zone. (Time zone can be overridden per
action.)

− For instance, <fmt:formatDate> will produce formatted date
and/or time output according to a specified format or style.

<jsp:useBean id="now" class="java.util.Date" />
<fmt:formatDate value="${now}" />

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

28

Date and Time

In this lab you will re-implement the Date and Time application
using JSP expressions and core and formatting tags from the JSTL.

Detailed instructions are contained in the Lab 6B write-up at the
end of the chapter.

Suggested time: 15-30 minutes.

LAB 6B

Optional

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

29

Scripts vs. EL/JSTL

• Let’s compare scripting to scriptless authoring:

− Many common tasks and information items can be encoded far
more easily using EL than in scriptlet code.

− Still, scriptlets offer the full power of the Java language in the JSP.

• For experienced Java coders, EL and JSTL can seem unwieldy at
first, and may not appear to offer as much power.

• Java code does not really belong on front-line JSPs, however.

− The arguments against this have been discussed and have to do
with reusability of business and presentation logic, and division of
labor between page authors and programmers.

− Where Java is truly necessary to implement a given body of logic,
the argument is simply that the Java code should be transferred
from the JSP itself to a component: either a JavaBean or a tag
handler class.

• Your work in Lab 6A should help to illustrate the advantages of
scriptless authoring, even by the narrow criteria of simplifying
logic on a single page.

− Additional JSTL actions offer even more benefit.

− For instance there is a <c:forEach> that facilitates looping.

− Further study of the JSTL is beyond the scope of this module.

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

30

The Electronic DJ

In this lab you will re-implement some pages of the Electronic DJ
application using EL, JSTL and standard actions to manage
JavaBeans.

Detailed instructions are contained in the Lab 6C write-up at the
end of the chapter.

Suggested time: 15 minutes.

LAB 6C

© 2000-2009 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

31

SUMMARY

• The JSP expression language is simple and intuitive to use,
and can make many page-authoring tasks much easier.

• It is also independent of Java, which has advantages:

− Page authors don’t need extensive Java skills.

− JSP can conceivably be implemented in a non-Java context, and can
be made to work with scripting languages other than Java, if scripting
is desired at all.

• Custom actions offer the greatest potential for extending the
power of JSP for web presentation, by encapsulating business
or presentation logic at any scope from a single application
up to an entire industry.

• The JSTL is just the tip of an iceberg of custom tag libraries,
many of which are available for free or otherwise easily
procured.

• The JSP 2.0 authors “expect …the prevalent use of script-less
pages.”

− The aim of JSP 2.0 is to wean JSP authors off of scripting elements
entirely, though it is clear in the JSP specification language that this is
not expected to happen overnight.

− The expression language and expanded use of standard and custom
actions (including the JSTL) will facilitate this shift.

