
CHAPTER 12

VALIDATORS

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

2

OBJECTIVES

After completing “Validators,” you will be able to:

 Describe the JSF validator architecture.

 Use standard validators and the required attribute to
enforce basic input-validation rules.

 Define custom error messages, support error-message
localization, and apply CSS styling specifically to error
output.

 Implement custom validator classes and validation methods.

 Use UI tree navigation to enforce constraints involving
multiple inputs.

 Take advantage of JSR-303 Bean Validation constraints when
encountered on backing beans.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

3

Validating Input

 Well here we are, most of the way through our JSF course, and
we’ve yet to acknowledge the sad fact that (shh):

Users don’t always do what they’re supposed to do.

 Most web applications devote a significant portion of their logic
to validating user input:

 Did the user provide all the required information?

 Are data of the correct type (number, boolean, date, etc.)?

 Are given values in legal ranges?

 Are values provided in correct numerical, alphabetical or
chronological order?

 Do values match where they’re expected to match?

 Validation is a form of error handling, and it is proactive, or
eager: we seek out possible problems and report them
immediately.

 This saves processing time and bandwidth.

 It also tends to result in clearer reporting: would you rather get a
message that one of the values you typed isn’t legal, for a specific
reason – or a NullPointerException from some faraway province
of Java code that you probably didn’t write?

 Validation is also an important application-security tool,
because here’s another sad truth:

Users aren’t always trying do what they’re supposed to do;
sometimes, they’re trying to break into your system.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

4

The Validator Interface

 JSF defines the role of a validator: a component that is
responsible for testing the validity of a component value.

 It encapsulates this basic responsibility in the Validator
interface:

public interface Validator
{
 public void validate
 (FacesContext, UIComponent, Object value)
 throws ValidatorException;
}

 As with Converter, the context and component parameters
often go unused, but they can come in handy for some
purposes.

 Most validators just perform tests on the given value.

 If the value is not valid, the validator must throw a
ValidatorException, which wraps an error message.

Validator

validate()

<<Interface>>

Editable
ValueHolder

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

5

Handling Validity Errors

 Validators are registered on components and invoked during –
you guessed it! – the Process Validations phase.

 If any ValidatorExceptions are caught during this phase, the
associated component’s valid property is set to false.

 At the end of the phase, if there are any invalid components,
JSF bails out of the cycle, moving directly to Render Response.

 In fact the same sort of handling occurs on any conversion
failures – different exceptions, different messages, same flow.

getAsObject

validate

Request

Response

1. RESTORE VIEW

2. APPLY VALUES

3. VALIDATE

4. UPDATE MODEL

5. INVOKE APPLICATION

6. RENDER RESPONSE

Converters
Converters

Converters
Validators

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

6

JSF
2.0

Standard Validators and Required Values

 JSF provides a handful of validators for the most common logic:

Validator

validate()

<<Interface>>

LengthValidator
minimum
maximum

LongRangeValidator
minimum
maximum

DoubleRangeValidator
minimum
maximum

MethodExpressionValidator
methodExpression

RegexValidator
pattern

 LengthValidator constrains the length of the lexical
representation – regardless of the data type.

 The range validators allow you to set a minimum value,
maximum value, or both, for integral or floating-point numbers.

 MethodExpressionValidator is a way to trigger a method on a
JavaBean and let it perform validation – this is one of three main
ways in JSF to plug in custom validation logic.

 The RegexValidator applies a given pattern as a regular
expression; non-matching values are considered invalid.

 You may wonder at the absence of a RequiredValidator.

 This is such a common need that JSF makes it even simpler:

 Setting required to true on any EditableValueHolder causes JSF
to treat a null or blank value as invalid for the component.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

7

Declaring Validation Rules in the View

 Set required to true to force a check for a non-empty value:
<h:inputText value="#{bean.prop}"
 required="true"
/>

 Include the appropriate core tag as a child of the component to
assign a standard validator – you can assign multiple
validators:

<h:inputText value="#{bean.fullName}" >
 <f:validateLength maximum="32" />
</h:inputText>

<h:inputText value="#{bean.age}" >
 <f:validateLongRange minimum="18" />
</h:inputText>

<h:inputText value="#{bean.probability}" >
 <f:validateDoubleRange minimum="0" maximum="1" />
 <f:validateLength maximum="6" />
</h:inputText>

 Note one frustrating limitation of the
DoubleRangeValidator: it cannot be told to exclude a
boundary value.

 It will always work inclusively – that is, they will always allow
your stated minimum or maximum value as a valid value.

 This is fine for integer ranges, but we often find reason to find a
floating-point number to be valid if it is, say, greater than a
minimum (not greater than or equal to).

 What if we want a positive number? Zero is the minimum but
should be excluded. DoubleRangeValidator can’t do that.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

8

Required Fields

 Examples/LandUse provides a simple example of the use of
the required attribute – see docroot/detail.xhtml:

 <td>Parcel:</td>
 <td>
 <h:inputText
 id="affectedParcel"
 label="affected parcel"
 value="#{DB.selectedProposal.affectedParcel}"
 required="true"
 />
 </td>

 Any failure to provide required values results in an error
message:

http://localhost:8080/LandUse

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

9

Strong Passwords

 We’ll begin a small case study for this chapter with a
demonstration of constraining password length and format.

 Do your work in Demos/Validation.

 The completed demo is in Examples/Passwords/Step2.

 The starter code lays out a three-field form by which the user
can register as a member of a website.

 It sets the required flag on each component, and uses
<h:messages> as the simplest means of feeding error messages
back to the user.

 See docroot/register.xhtml:
<f:view>
 <h:form>
 <h:messages />
 <table>
 <tr>
 <td>User name:</td>
 <td><h:inputText
 id="name"
 value="#{member.name}"
 required="true"
 /></td>

 The command button will trigger navigation to a success.jsp,
but whenever validation errors occur, JSF skips to rendering
the response, and always with a null outcome, so the
originating page is served again.

<h:commandButton value="Register"
 action="success" />

DEMO

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

10

Strong Passwords

1. Build and test the starter application. If you fail to enter values, you
see three not-very-friendly error messages:

http://localhost:8080/Passwords

2. Before we even get into validation, let’s make those messages at least a
little nicer. We already have id attributes on the individual text fields.
But since we don’t define an id for the <h:form>, JSF generates one
for us. Define one now:

<h:form id="form" >

3. If you test again, with just that one change, you’ll see the error

messages all start with “form:” instead of “j_idt7”.

DEMO

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

11

Strong Passwords

4. We can do even better by setting label attributes into the text fields
themselves – as in:

<h:inputSecret
 id="password"
 label="Password"
 value="#{member.confirmPassword}"
 required="true"
/>

5. Now the whole ID, for example “form:password”, becomes simply

“Password” – test this now if you like, or see it in later steps.

6. Now set length constraints on each of the two password fields:
<h:inputSecret id="password" label="Password"
 value="#{member.confirmPassword}"
 required="true"
>
 <f:validateLength minimum="8" />
</h:inputSecret>

7. Build and test, and try providing shorter passwords:

 The previously-entered password value is cleared when the page is
re-served, because this is an <h:inputSecret> component.

DEMO

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

12

Strong Passwords

8. So we have our validation logic in place; let’s clean up the
presentation of error messages a bit. Get rid of the <h:messages>
tag at the top of the form.

9. To each of the three rows of the table with input components, add a
third cell that holds an <h:message> component. Call out the client
ID for which you want to show messages, and set an errorStyle:

 <td>User name:</td>
 <td><h:inputText id="name" label="User name"
 value="#{member.name}"
 required="true"
 /></td>
 <td><h:message for="name"
 errorClass="errorMessage" /></td>
</tr>

 This style is already defined in docroot/register.css.

10. Build and test one last time, and see that messages are now visually
connected to their subjects:

DEMO

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

13

Strong Passwords

11. Finally, let’s insist on stronger passwords by requiring at least one of
each of a few character classes. Apply the following validators to each
of the two password fields:

 <f:validateRegex pattern=".*[A-Z].*" />
 <f:validateRegex pattern=".*[a-z].*" />
 <f:validateRegex pattern=".*[0-9].*" />

12. Build and test, and see that none of the following passwords will be

found valid ...
Provost (no digit)
mypassword3 (no capital letter)
Aa1 (too short!)

 ... while these will:
Provost9
BIG000deal

DEMO

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

14

Producing Error Messages

 Each ValidatorException wraps an instance of
FacesMessage.

 These are collected during the Apply Request Values and
Process Validations phases by the FacesContext object:

FacesContext

$ getCurrentInstance()
getAttributes()

FacesMessage
severity
summary
detail0..*0..*

clientId

 It is not a simple list or bag of messages, but a map.

 The key is the client ID of the component with the problem.

 And, it’s not a simple map but a map of lists of messages.

 This makes sense for what we need to do with error messages,
because each field can encounter multiple problems:

firstName REQUIRED

lastName (no errors)

 BELOW MINIMUM

bankBalance INVALID FRACTION

 INVALID CURRENCY

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

15

The FacesMessage Class

 FacesMessage, in turn, encapsulates three values: severity,
summary message, and detail message.

 Message severity is a simple enumeration of possible levels –
these are defined as instances of the inner class
FacesMessage.Severity:

FacesMessage.SEVERITY_FATAL
FacesMessage.SEVERITY_ERROR
FacesMessage.SEVERITY_WARN
FacesMessage.SEVERITY_INFO

 Each message includes a pair of strings for summary and detail.

 There is no formal distinction between these, and often they’re
identical.

 The framework is just giving you some room to define shorter and
longer versions of messages if you choose to do so.

 The UI components that present messages can be tweaked to show
one or the other: by default <h:messages> shows summaries and
<h:message> shows details.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

16

Message Keys

 Server-side code must produce error messages – whether that
code is in the JSF framework, your application, or both.

 But error messages become visible to the user on the client side.

 This means that they must be localized – or at least that JSF
must support localization of your messages.

 By default, the standard validators will use pre-defined message
keys to generate their FacesMessage instances.

 Here are some of the most common validator keys:
javax.faces.component.UIInput.REQUIRED
javax.faces.validator.LengthValidator.MINIMUM
javax.faces.validator.LengthValidator.MAXIMUM
javax.faces.validator.LongRangeValidator.MINIMUM
javax.faces.validator.LongRangeValidator.MAXIMUM
javax.faces.validator.DoubleRangeValidator.MINIMUM
javax.faces.validator.DoubleRangeValidator.MAXIMUM

 See the JSF specification (section 2.5.2.4) for a complete list.

 The great majority of standard keys are actually for type-
conversion errors, and not specifically for validators.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

17

Message Parameters

 The message values all carry replaceable parameters – here’s
the message for required fields:

{0}: Validation Error: Value is required

 The rules for replacement are a little vague in the specification,
but one thing is stated clearly:

 The last of the numbered parameters will be replaced with the
component’s label.

 Other parameters, if present, will mean different things for
different messages and validators.

 It’s usually obvious from the message what each parameter should
mean; here’s the message for minimum integer value:

javax.faces.validator.LongRangeValidator.MINIMUM =
 {1}: Validation Error: Value is greater than
 allowable maximum of "{0}"

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

18

Presenting Error Messages

 The custom tags <h:messages> and <h:message> each take
different approaches to rendering error messages onto a page.

 <h:messages> will render the summary value of every message in
the context, in a simple bullet-list style.

 <h:message> will render the detail value for the first message for
a specific component – keyed by a client ID supplied by the for
attribute – as raw text or as an HTML to implement
specific formatting.

 It’s possible to use both:

 <h:messages> at the top of the page

 An <h:message> for each component, as a third column on the
table

<f:view>
 <h:messages />
 <h:form>
 ...
 <h:inputText id="a" label="Semi-axis A"
 value="#{ellipsoid.a}"
 required="true" >
 <f:validateDoubleRange minimum="0.0000001"/>
 </h:inputText>
 </td>
 <td><h:message for="a" /></td>
 ...

 It’s also possible to use either absolute or relative client IDs; if
relative they will be based on the nearest NamingContainer
enclosing the <h:message> tag.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

19

The errorStyle and errorClass Attributes

 Both of these tags support the errorStyle attribute – along
with fatalStyle, warnStyle, and infoStyle.

 Each attribute defines styling for a specific message severity.

 A second set of attributes are fatalClass, errorClass,
warnClass, and infoClass.

 Here the value is a CSS class, which will be defined on a (usually)
separate stylesheet.

 Conversion and validation errors will exhibit error-level
severity – this is FacesMessage.SEVERITY_ERROR.

 So, use errorClass to indicate presentation styling for your
validation and conversion error messages:

<h:message
 for=":form:firstName"
 errorClass="errorMessage"
/>

 The error-message class in the associated stylesheet might be:
.errorMessage
{
 color: red;
 font-weight: bold;
}

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

20

Custom Messages

 Picking up where we left off with our user-registration page,
let’s further fine-tune the message output with custom
messages for required fields and string length.

 Do your work in Demos/Messages, or continue your work in
Demos/Validation.

 The completed demo is in Examples/Passwords/Step3.

1. Open the configuration file and declare an <application> config
with one resource bundle:

 <application>
 <message-bundle>Resources</message-bundle>
 </application>

2. Create a file docroot/WEB-INF/classes/Resources.properties, with

the following message keys and values:
javax.faces.component.UIInput.REQUIRED=
 {0} is required.
javax.faces.validator.LengthValidator.MINIMUM=
 {1} must be at least {0} characters.

 Note that there should be no line breaks between the key, the
equals sign, and the value; the line breaks above are used to format
the information for the coursebook.

3. Build and test again, and see your messages in play:

DEMO

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

21

Producing Messages from Anywhere

 It is also possible to add messages to the JSF context
programmatically, from any code that is invoked in that
context.

 Consider Examples/Shopping/Step6, which posts an
informational message if, after valid inputs are provided, the
control logic winds up merging quantities for an item that had
already been ordered.

 See src/cc/biz/web/ShoppingCart.java, which watches for
any purchased item whose key matches any of those already in
the cart.

 If any such items are found, it delegates to an ErrorHandler:
if (someItemsMerged)
 ErrorHandler.info
 ("One or more items were already ...");

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

22

Producing Messages from Anywhere

 The handler method “manually” adds a message to the current
context – see src/cc/jsf/ErrorHandler.java.

 One overload of the info method delegates to the other, passing
null as the associated client ID; this is legal, and just means the
message is “global:”

public static void info (String message)
{
 info (message, null);
}

 The other overload adds a message to the context, taking the given
string to be both summary and detail messages:

public static void info (String message, String ID)
{
 FacesContext.getCurrentInstance ()
 .addMessage (ID, new FacesMessage
 (FacesMessage.SEVERITY_INFO,
 message, message));
}

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

23

Producing Messages from Anywhere

 Adding messages to the context does not interrupt the JSF
lifecycle in any way.

 But the next view presentation will be able to present those
messages, using <h:message(s)> as usual.

 Build and test this version, and see that if you purchase some
additional quantity of an item after adding it to the cart once,
you’ll get this message – which after all is just informational:

http://localhost:8080/Shopping

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

24

Validating Invoice Data

Suggested time: 30 minutes

In this lab you will add validation constraints to the invoice forms
in the Billing application:
 Customer, invoice number, invoice date, and amount are all

required fields.
 Amounts must not be negative numbers, nor zero.

You will also set labels for all inputs, and enhance the page design
to place field-specific error messages next to the input fields
themselves, instead of relying on a summary at the top of the page
as the starter code does.

Detailed instructions are found at the end of the chapter.

LAB 12A

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

25

JSF
2.0

Custom Validators

 You can define your own validation logic in several ways – this
is largely parallel to what we’ve seen for converters, except that
there is no validator-for-class option:

 Create a class that implements Validator and register it as a
validator in the configuration file:

 Annotate your implementation as a @FacesValidator.
@FacesValidator
public class MyValidator
 implements Validator

 Configure a Validator implementation as a managed bean.

 Implement a method on any bean with the same signature as the
validate method from Validator, but your own choice of method
name. This can be a nice way to include validation logic on the
backing bean itself, or on a related controller.

<validator>

<validator-id>

<property>
<property>

<validator-class>

<validator>
 <validator-id>
 myValidator
 </validator-id>
 <validator-class>
 com.me.MyValidator
 </validator-class>
</validator>

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

26

<f:validator> and the validator Attribute

 Plug your validation logic into your view definitions using
different techniques, depending on how the logic was defined:

 Attach an <f:validator> tag to any editable component, using
the validatorId attribute to identify the validator you want.

<h:inputText value="#{bean.prop}" >
 <f:validator validatorId="myValidator" />
</h:inputText>

 Use this same tag, but with a binding attribute, to identify a
managed bean that implements Validator:

<h:inputText value="#{bean.prop}" >
 <f:validator binding="#{myValidatorBean}" />
</h:inputText>

 Invoke a validation method using the validator attribute on the
editable component to identify it:

<h:inputText
 value="#{bean.prop}"
 validator="#{bean.validateProp}"
/>

 Using the reference implementation, you can also set validator to
a validator ID – this is undocumented and non-standard:

 validator="myValidator"

 Either way, one small issue with this last technique is that you can
only do it once per component; you can’t mix and match
validation methods the way you can with validator classes.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

27

Conversion/Validation Lifecycle

 Partly as a simple example of a custom validator, and partly to
explore the lifecycle implications of validation errors, we will
observe a new version of the Lifecycle application.

 See Examples/Lifecycle/Step8, which has two new features:

 A custom validator that traces calls to validate, and also can
trigger a validation error, thus altering the request handling

 Code in the existing value-change listener that invalidates user
input later in the validations phase

 First, see docroot/lifecycle.xhtml, which now assigns a
custom validator to the menu component:

 <h:selectOneMenu
 value="#{bean.selection}"
 valueChangeListener=
 "#{bean.valueChangeListener}"
 >
 <f:selectItems value="#{bean.selections}" />
 <f:valueChangeListener
 type="cc.jsf.ValueChangeListener" />
 <f:converter converterId="converterHook" />
 <f:validator validatorId="validatorHook" />
 </h:selectOneMenu>

 The validator is declared in docroot/faces-config.xml:
 <validator>
 <validator-id>validatorHook</validator-id>
 <validator-class>cc.jsf.ValidatorHook
 </validator-class>
 </validator>

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

28

Conversion/Validation Lifecycle

 The implementation in src/cc/jsf/ValidatorHook.java is
simple: it traces the call to validate and then succeeds for most
values, but flunks one.

public void validate (FacesContext context,
 UIComponent component, Object value)
 throws ValidatorException
{
 System.out.print (" Validator.validate() ... ");
 if (value.equals (Menu.Choice.UNSUBSCRIBE))
 {
 System.out.println ("FAILS.");
 throw new ValidatorException (new FacesMessage
 (FacesMessage.SEVERITY_ERROR,
 "No!", "Not allowed!"));
 }
 else
 System.out.println ("succeeds.");
}

 Build and test as usual. When you submit any value except
UNSUBSCRIBE, we see the full lifecycle, with the validator
called after the converter during the validations phase:

http://localhost:8080/Lifecycle

 ViewPhaseListener.before(PROCESS_VALIDATIONS 3)
 Converter.getAsObject()
 Validator.validate() ... succeeds.
 Menu.getSelections()
 Menu.getSelections()
 Menu.getSelection()
 Menu.valueChangeListener()
 ValueChangeListener.processValueChange()
 ViewPhaseListener.after(PROCESS_VALIDATIONS 3)

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

29

Conversion/Validation Lifecycle

 If you go back and submit UNSUBSCRIBE, you’ll see that the
lifecycle is shortened based on the validator’s actions:

GlobalPhaseListener.before(PROCESS_VALIDATIONS 3)
 ViewPhaseListener.before(PROCESS_VALIDATIONS 3)
 Converter.getAsObject()
 Validator.validate() ... FAILS.
 ViewPhaseListener.after(PROCESS_VALIDATIONS 3)
GlobalPhaseListener.after(PROCESS_VALIDATIONS 3)

GlobalPhaseListener.before(RENDER_RESPONSE 6)
 ViewPhaseListener.before(RENDER_RESPONSE 6)
 Menu.getSelection()
 Menu.getSelections()
 Converter.getAsString()
 Converter.getAsString()
 Converter.getAsString()
 Converter.getAsString()
Jul 17, 2010 7:24:24 PM
com.sun.faces.renderkit.RenderKitUtils
renderUnhandledMessages
INFO: WARNING: FacesMessage(s) have been enqueued,
but may not have been displayed.
sourceId=form:j_idt3[severity=(ERROR 2),
summary=(No!), detail=(Not allowed!)]
 ViewPhaseListener.after(RENDER_RESPONSE 6)
GlobalPhaseListener.after(RENDER_RESPONSE 6)

 Of course the expected page navigation is set aside as well.

 Notice too a behavior of JSF that we’ve seen here and there during
the course but not yet highlighted: it knows which error messages
have been reported and which haven’t, and it does the developer a
kindness by dumping the unreported ones to the console.

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

30

Conversion/Validation Lifecycle

 Now, try VOLUNTEER: this also fails:
GlobalPhaseListener.before(PROCESS_VALIDATIONS 3)
 ViewPhaseListener.before(PROCESS_VALIDATIONS 3)
 Converter.getAsObject()
 Validator.validate() ... succeeds.
 Menu.getSelections()
 Menu.getSelections()
 Menu.getSelection()
 Menu.valueChangeListener()
 ValueChangeListener.processValueChange()
 Resetting valid flag on UIComponent ...
 ViewPhaseListener.after(PROCESS_VALIDATIONS 3)
GlobalPhaseListener.after(PROCESS_VALIDATIONS 3)

GlobalPhaseListener.before(UPDATE_MODEL_VALUES 4)
 ViewPhaseListener.before(UPDATE_MODEL_VALUES 4)
 ViewPhaseListener.after(UPDATE_MODEL_VALUES 4)
GlobalPhaseListener.after(UPDATE_MODEL_VALUES 4)

GlobalPhaseListener.before(RENDER_RESPONSE 6)
 ViewPhaseListener.before(RENDER_RESPONSE 6)
 Menu.getSelections()
 Converter.getAsString()
 Converter.getAsString()
 Converter.getAsString()
 Converter.getAsString()
Jul 17, 2010 7:26:36 PM
com.sun.faces.renderkit.RenderKitUtils
renderUnhandledMessages
INFO: WARNING: FacesMessage(s) have been enqueued,
but may not have been displayed.
sourceId=form:j_idt3[severity=(WARN 1),
summary=(Hello), detail=(Just kidding ..)]
 ViewPhaseListener.after(RENDER_RESPONSE 6)
GlobalPhaseListener.after(RENDER_RESPONSE 6)

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

31

Conversion/Validation Lifecycle

 This is the work of additional code in the pre-existing listener
class. See src/cc/jsf/ValueChangeListener.java:

public void processValueChange (ValueChangeEvent ev)
{
 System.out.println
 (" ValueChangeListener.processValueChange()");

 if (ev.getNewValue ().equals
 (Menu.Choice.VOLUNTEER))
 {
 System.out.println
 (" Resetting valid flag on UIComponent...");
 ((EditableValueHolder) ev.getComponent ())
 .setValid (false);
 FacesContext.getCurrentInstance ().addMessage
 (ev.getComponent ().getClientId (),
 new FacesMessage
 (FacesMessage.SEVERITY_WARN,
 "Hello", "Just kidding .."));
 }
}

 The processing of validators had already concluded by the time
this code was called, so the shortening of the lifecycle didn’t occur
until the next phase.

 Still, no application of the model value occurred, so the difference
isn’t substantial.

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

32

Validating Multiple Inputs

 JSF makes validating single inputs pretty easy – even for more
complex validation logic.

 It is weaker in its support for validation logic that requires
multiple inputs:

 Making sure passwords match

 Checking that start and end dates are in chronological order

 Requiring one field only if another value is provided or is equal to
some expected value

 MVC frameworks tend to apply validation starting at the
request scope and drilling down from there.

 This makes them better at multi-input validation, but less facile for
single inputs.

 You can “look outside” the scope of the single input you’re
given in any validator or validation method.

 Use the provided UIComponent and call navigation methods
including getParent, getChildren, and findComponent.

 Then derive other values from the form as needed and apply your
multi-value constraints.

 Though workable, this isn’t a totally clean system.

 The eventual error message will be associated with the field to
which the validator is attached, even though others are involved.

 It’s not obvious where to encode the ID(s) of the other input
component(s) to minimize maintenance concerns.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

33

Matching Passwords

 Examples/Passwords/Step4 has been enhanced with a
validator that assures that the two passwords match.

 See src/cc/jsf/PasswordValidator.java:
public void validate (FacesContext context,
 UIComponent component, Object value)
 throws ValidatorException
{
 Object mainPassword = ((EditableValueHolder)
 component.findComponent (":form:password"))
 .getValue ();

 if (mainPassword != null &&
 !mainPassword.equals (value))
 throw new ValidatorException (new FacesMessage
 (FacesMessage.SEVERITY_ERROR,
 "Passwords must match.",
 "Passwords must match."));
}

 Note that we hard-code the absolute ID of the first password field.

 Build and test, and see that, if all other validations succeed, but
the passwords don’t match, we see the associated error
message:

http://localhost:8080/Passwords

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

34

Chronological Order

 Examples/LandUse also uses a custom validator for multi-
field validation:

 It assures that two date fields are in chronological order.

 It assures that two others are in order and also separated by a
mandatory delay.

 See docroot/detail.xhtml.

 The proposed start date associates a specific method on a managed
bean as a validator:

 <td>Proposed start date:</td>
 <td>
 <h:inputText
 id="useStart"
 label="start date"
 value="#{DB.selectedProposal.useStart.time}"
 required="true"
 validator=
 "#{dateValidator.startVsApplicationDate}"
 >
 <f:convertDateTime pattern="M/d/yy" />
 </h:inputText>
 </td>

 The end date does something similar:
 validator="#{dateValidator.endVsStartDate}"

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

35

Chronological Order

 See src/gov/usda/usfs/landuse/web/DateValidator.java
for the bean class.

 startVsApplicationDate compares one date to another and insists
on an “approval time” to boot:

public void startVsApplicationDate
 (FacesContext context,
 UIComponent component, Object value)
 throws ValidatorException
{
 long startTime = ((Date) value).getTime ();
 long applicationTime =
 ((Date) ((ValueHolder) component
 .findComponent (":details:applicationDate"))
 .getValue ()).getTime ();

 if (applicationTime + APPROVAL_TIME > startTime)
 throw new ValidatorException (new FacesMessage
 (FacesMessage.SEVERITY_ERROR,
 "Starts too soon",
 "You must allow 6 months from the " +
 "proposal date for project approval."));
}

 endVsStartDate does almost the same thing, with no lag time.

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

36

Chronological Order

 Test these constraints on any of the existing proposals:
http://localhost:8080/LandUse

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

37

Invoice and Payment Date

Suggested time: 45-60 minutes

In this lab you will add two custom validators to the Billing
application. One is a generalization of the date-ordering validator
we just saw for LandUse: it can be configured as to the client ID of
the “other” date component, and it does a better job of presenting
localizable error messages. This validator is complete, and you will
just need to attach it to the payment-date component.

You will then build the second validator, which assures that a date
is a business day – which, in a not-so-globally-robust fashion, we’ll
define as being anything but Saturday or Sunday. You will then
attach this validator to both date components, enforcing a rule that
we don’t date either invoices or payments on weekends.

Detailed instructions are found at the end of the chapter.

LAB 12B

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

38

JSF
2.0 JSF and “Bean Validation”

 A new validation standard enters the Java EE platform as of
edition 6: this is known as Bean Validation or sometimes by
its JSR number, 303.

 By this standard, any JavaBean can carry source-code
annotations that declare validation constraints on its
properties.

 These annotations can then be observed and enforced by a
validation tool – at any time, in any tier of the application.

 So the advantage is that we can define validation constraints
once, instead of having to write them out in different languages
for different parts of a large application.

 JSF 2.0 supports Bean Validation automatically – if an
implementation of JSR-303 is found on the class path.

 In this case, whenever a backing property has any JSR-303
annotations, JSF will trigger the bean validator.

 Error messages reported by the validator will be wrapped in
FacesMessages and added to the context, and the target
component will be set to invalid.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

39

Validation Annotations

 Examples/JSR303 holds a simple Java SE application that
validates values on two different JavaBeans.

 One of these is familiar – see src/cc/math/Ellipsoid.java:
 @DecimalMin
 (
 value=".0000001",
 message="Semi-axis A must be a positive number"
)
 private double a = 1;

 The other, in src/cc/web/PersonalInfo.java, sets various
constraints on its properties: rejecting null values and
enforcing a regular expression, setting a value range, etc:

 @NotNull
 @Pattern
 (
 regexp="([A-Za-z\\'\\-]+)([A-Za-z\\'\\-]+)+",
 message="Must include at least ..."
)
 private String name;

 @Min
 (
 value=18,
 message="Age must be at least 18"
)
 @Max
 (
 value=120,
 message="Age must be no greater than 120"
)
 private int age;

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

40

Validation Annotations

 An application class creates a few instances of each type and
applies the Bean Validator to them; we won’t dig into this code
as it’s not directly relevant to JSF practice, since the JSF
implementation will carry out this process for us.

 Build and test as follows:
ant
ant run

Ellipsoid "sphere":
 Validation succeeded.

Ellipsoid "twoD":
 Semi-axis B must be a positive number.

Ellipsoid "senseless":
 Semi-axis C must be a positive number.

Good PersonalInfo:
 Validation succeeded.

Bad PersonalInfo:
 Must include at least first and last name.
 Please keep reference to 40 characters or less.
 Invalid e-mail address.
 Invalid SSN.
 Age must be at least 18.

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

41

Using Existing Constraints

 Examples/Passwords/Step5 uses constraint annotations
instead of defining validators in the view.

 Here’s the new backing bean – see src/cc/jsf/Member.java:
 @Size(min=8, message=PASSWORD_LENGTH_MESSAGE)
 @Pattern.List
 ({
 @Pattern(regexp=".*[A-Z].*",
 message=PASSWORD_FORM_MESSAGE),
 @Pattern(regexp=".*[a-z].*",
 message=PASSWORD_FORM_MESSAGE),
 @Pattern(regexp=".*[0-9].*",
 message=PASSWORD_FORM_MESSAGE)
 })
 private String password;

 In the view, the length and regular-expression validators have
been removed.

 We’ve kept the required attributes.

 We’ve also kept the custom validator for password matching – this
is more than we could manage with JSR-303.

 Build and test, and see the same basic logic, but with the new
messages stemming from the source-code annotations:

http://localhost:8080/Passwords

EXAMPLE

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

42

JSF
2.0 Using <f:validateBean>

 The <f:validateBean> tag gives you some options regarding
JSR-303 validation.

 You can place this component as either an ancestor or child of
one or more input components.

<h:inputText value="#{myBean.trickyProperty}" >
 <f:validateBean disabled="true" />
</h:inputText>

<f:validateBean validationGroups="#{groups}" >
 <h:inputText value="#{bean.prop1}" />
 <h:inputText value="#{bean.prop2}" />
 <h:inputText value="#{bean.prop3}" />
</f:validateBean>

 You can set validation groups relevant to this form or to certain
fields, thus filtering the possible validation constraints; this is
going to be beyond our scope.

 You can disable JSR-303 validation outright – again, for a field or
for an entire form.

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

43

Disabling Bean Validation

 In Demos/Disable, we have the latest version of the HR
application, and we’ll experiment a bit with entering invalid
salaries from the payroll-management page.

1. Build and test at the following URL:
http://localhost:8080/HR

2. Click the Payroll link.

3. Enter a salary of $1,000.00 for the first employee in the first
department, and you’ll see an error message:

 This is JSF observing the validation constraint on the backing bean
– see Examples/HR/JPA/src/cc/hr/entity/Employee.java:

 @Min(value = 10000,
 message = "The employee's salary must ...")
 @Max(value = 9999999,
 message = "The employee's salary must ...")
 private Long salary;

DEMO

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

44

Disabling Bean Validation

4. Open docroot/payroll.xhtml, and (near the bottom of the file)
disable JSR-303 validation for this field:

 <h:inputText
 id="salary"
 value="#{employee.salary}"
 valueChangeListener="..."
 >
 <f:convertNumber type="currency" />
 <f:validateBean disabled="true" />
 </h:inputText>

5. Build and test again – what happens?

 You did indeed disable JSR-303 validation for the salary field –
but only as it was being performed by the JSF runtime.

 There’s another layer to this application, which is a system of
JPA-2.0 façades and entities.

 JPA 2.0 also observes JSR-303 constraints!

 And of course this is the intended value of JSR-303: that we get
validation and “re-validation” of values throughout an application,
based on a central definition of validation constraints.

 See the server console for plenty of detail on what JPA didn’t like.

DEMO

© 2007-2010 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

45

SUMMARY

 Like the converter framework, JSF validation is simple to use
and surprisingly powerful.

 Simple rules including required fields, string lengths, and
value ranges can easily be declared as part of the view
definition.

 Bear in mind that these simple rules account for the overwhelming
majority of all input validation in web applications.

 More complex logic can be plugged in by a handful of
straightforward techniques.

 If there is a weak spot, it’s multi-input validation.

 But a little extra logic to navigate the UI tree will bridge the gap
between subject components.

 Where JSR-303 validation constraints are available, JSF
makes it easy to take full leverage from them.

