
CHAPTER 5

ASSEMBLING OBJECT MODELS

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

2

OBJECTIVES

After completing “Assembling Object Models,” you will be able to:

 Populate bean properties that are collections and maps.

 Refer to sub-objects of defined beans using compound
property names.

 Control the order in which declared beans are instantiated.

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

3

Collections and Maps

 Spring offers declarative support for properties that are
collections or maps of values.

 Note that using compound property naming would not work
here, because that syntax will never instantiate new objects.

 It assumes that the tree is already constructed and just lacks
various leaf values; it assumes that any indexed property has
already been allocated or “dimensioned” to its correct size.

 This will be an issue later, when we work with command objects.

 Spring supports various Collections API types, each by its own
element name, used as a child of a property, constructor
argument, or other collection type:

 <list> populates a List, with child elements <value>, <bean>,
<ref>, or another collection type

 <set> populates a Set with the same possible child elements

 <map> populates a Map; this model is a little more complex

 <props> populates a Properties object, much the way a map
works but with fewer options

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

4

Populating Maps

 The model for the <map> element involves a child element for
each <entry>:

 These in turn have keys (either a key attribute or a <key> child

element) and values (any of the usual suspects, as with lists).

 The <props> element can be populated in a similar fashion to a
map object, with <prop> children instead of <entry>s.

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

5

Support for Generics

 Spring starting with version 2.5 has solid support for Java-5.0
collection types that take advantage of generics.

 There is a real challenge here, and Spring 2.0 had some trouble:

 Remember that type parameters are erased at runtime – by the
time the container and bean factory are in play, their target types
are plain old Lists and Maps, even if they were List<String> and
Map<Long,Set<String>> when they were compiled.

 It’s not feasible to declare the full generic type of a collection as a
class name in the configuration – after all, the angled brackets
would be misinterpreted as XML markup!

 There are ways around both of these difficulties, but even in
spite of them, Spring will do a pretty good job of recognizing
type parameters.

 If you use <list> to populate a List<Integer>, Spring will
convert your numeric values to Integer objects – even though at
runtime it could get away with piling up String objects that would
later get you in trouble.

 There are theoretical limits to Spring’s powers of perception, but
even nested collection types resolve neatly, as we’ll see in a
moment.

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

6

Declaring and Using Collections

 See Collections_Step1 for a simple example of declaring the
contents of collection-type properties.

 The class cc.Holder defines three properties:
List<String> names;
Map<String,Integer> frequencies;
Map<String,Set<String>> errors;

 The configuration file Collections.xml makes short work of
this:

<bean id="Holder" class="cc.Holder" >
 <property name="names" >
 <list>
 <value>Sam</value>
 <value>Fred</value>
 <value>Jane</value>
 </list>
 </property>
 <property name="frequencies" >
 <map>
 <entry key="Rock" value="787" />
 <entry key="Paper" value="662" />
 <entry key="Scissors" value="1090" />
 </map>
 </property>
 ...

EXAMPLE

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

7

Declaring and Using Collections

 It even handles the nested type, a map of strings and sets of strings:
 ...
 <property name="errors" >
 <map>
 <entry key="firstName" >
 <set>
 <value>Field is required</value>
 </set>
 </entry>
 <entry key="lastName" >
 <set>
 <value>Field is required</value>
 </set>
 </entry>
 <entry key="age" >
 <set>
 <value>Field is required</value>
 <value>Must be a positive number</value>
 </set>
 </entry>
 </map>
 </property>
</bean>

 cc.test.TestCollections does very little, just instantiates the
bean and dumps its values to the console. Run it now:

[Sam, Fred, Jane]
{Rock=787, Paper=662, Scissors=1090}
{firstName=[Field is required], lastName=[Field is
required], age=[Field is required, Must be a
positive number]}

EXAMPLE

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

8

A New Policy Language

 We’ll put our newfound facility with collections to work.

 The Java security architecture specifies a Java-like grammar for
policy files:

grant codeBase "file:This.jar" signedBy "Fred"
{
 permission java.io.FilePermission
 "SomeFile.txt", "read";
 permission java.util.PropertyPermission
 "java.home", "read";
};

 Maybe an XML vocabulary would be better!

 Do your work in Policy_Step1.

 The completed demo is in Policy_Step2.

1. If you like, review the code in src/cc/security/DynamicPolicy.java.
The full implementation of a Java SE Policy is not important, but
notice that the behavior of the class is based on a property
permissionsMap that is a Map<CodeSource,List<Permission>>.

2. In src/cc/security/test/TestPolicy.java, the main method sets an
instance of this class as the local security policy, installs a security
manager, and then attempts to read a system property. Since reading
system properties is a checked action, the policy will have to grant
permission to the controller class for this action to succeed.

Policy.setPolicy
 ((Policy) factory.getBean ("SecurityPolicy"));
System.setSecurityManager (new SecurityManager ());

System.out.println ("Property java.home is " +
 System.getProperty ("java.home"));

DEMO

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

9

A New Policy Language

3. Run this class as a Java application, and see that the action does fail:
Checking (java.util.PropertyPermission java.home
read) for code base (file:/C:/Capstone/Spring/Demos
/Policy/build/classes/ <no signer certificates>)
Exception in thread "main"
java.security.AccessControlException: access denied
(java.util.PropertyPermission java.home read)

4. If you open Policy.xml, you’ll see why: the policy bean is declared,

but the permissionsMap is not populated, so it sits empty when the
access controller checks for the necessary permission.

5. Now we’ll start building up a declaration of a specific security policy.
Start by setting the permissionsMap property to a map with one
empty entry:

<bean id="SecurityPolicy"
 class="cc.security.DynamicPolicy" >
 <property name="permissionsMap" >
 <map>
 <entry>
 </entry>
 </map>
 </property>
</bean>

DEMO

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

10

A New Policy Language

6. Define the key for the entry as a CodeSource object. To create this
bean you have to provide constructor arguments: the location of the
code source as a string, and the list of parties who’ve digitally signed
the code source. This latter argument is null, so we’ll use a construct
we haven’t yet studied, but a very simple one: null is <null/>.

 <entry>
 <key>
 <bean class="java.security.CodeSource" >
 <constructor-arg value=
 "file:/C:/Capstone/Spring/Demos
 /Policy/build/classes/"
 />
 <constructor-arg >
 <null/>
 </constructor-arg>
 </bean>
 </key>
 </entry>

 WARNING: case matters in the URL above – even the capital ‘C’!

7. Grant the necessary permission to this code source, as one element in
a list:

 </key>
 <list>
 <bean class=
 "java.util.PropertyPermission" >
 <constructor-arg value="java.home" />
 <constructor-arg value="read" />
 </bean>
 </list>
 </entry>

DEMO

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

11

A New Policy Language

8. Test again, and see how your policy declaration flies:
(ouch) (oh, that’s rude)
Failed to convert value of type [java.lang.String]
to required type
[java.security.cert.Certificate[]]; nested
exception is java.lang.IllegalArgumentException: No
matching editors or conversion strategy found
(oops)

9. The bean factory really didn’t like something that we did! The gist of

the error report that we get back is shown above: couldn’t convert a
string to an array of certificates ... ?

10. If you look at the constructors for CodeSource, there are two
constructor overloads – one of which takes an array of certificates:

javap java.security.CodeSource

public class java.security.CodeSource extends
java.lang.Object implements java.io.Serializable{
 public java.security.CodeSource(java.net.URL,
java.security.cert.Certificate[]);
 public java.security.CodeSource(java.net.URL,
java.security.CodeSigner[]);

11. We don’t really care which constructor we call, since we just want to

pass null for either the certificate array or the signer array. But
Spring cares! It cares deeply, and it can’t make the decision based on
a string value and a null.

DEMO

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

12

A New Policy Language

12. You’d figure a type attribute would be the solution here; but,
strangely, what works is an index attribute. Set this as shown:

 <constructor-arg value=
 "file:/C:/Capstone/.../Policy/build/classes/"
 />
 <constructor-arg index="1" >
 <null/>
 </constructor-arg>

13. Test now, and you should see that the policy is instantiated correctly

– and, what’s more, it works!
Property java.home is c:\Java7\jre

DEMO

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

13

The Spring Utility Schema

 Spring includes a number of other XML models for content that
can appear in a beans configuration file, thanks to Spring’s
support for XML namespaces as extension points.

 We’ll see models for AOP and transactions later in this course.

 Now, we’ll look at the utility schema, which makes possible a
few new configurations:

 Beans that are collections – note that so far we’ve only seen
beans that hold collections as properties

 Using a property of one bean to initialize a property on a another

 Gaining access to constants defined on a Java class and treating
those values as configurable beans

 A configuration file that uses these new constructs must declare
a namespace prefix for this separate schema and identify the
schema location:

<beans
 xmlns="...beans"
 xmlns:util=
 "http://www.springframework.org/schema/util"
 xmlns:xsi="..."
 xsi:schemaLocation=
 "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema
 /beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema
 /util/spring-util-2.5.xsd"
>

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

14

Sharing Information

 What if we wanted to configure a second instance of our three-
collection Holder class, and for it to have its own data for one
of the collections but the same data for the other two?

 We could just clone the whole bean config and edit from there –
a/k/a copy-and-paste “reuse.”

 It would be much better, more maintainable, to define those two
shared collections just once each, and then re-use the information.

 We’ll look at two ways of doing that.

 In Collections_Step2 are two new configuration files.

 SeparateBeans.xml defines each of the three collections (that
were inner beans in the “Holder” bean before) as first-class
beans of their own, using the utility vocabulary:

<util:list id="globalNames" >
 <value>Sam</value>
 <value>Fred</value>
 <value>Jane</value>
</util:list>

<util:map id="globalFrequencies" >
 <entry key="Rock" value="787" />
 <entry key="Paper" value="662" />
 <entry key="Scissors" value="1090" />
</util:map>

<util:map id="globalErrors" >
 ...

EXAMPLE

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

15

Sharing Information

 The utility schema defines <util:list>, <util:set>, and
<util:map>.

 Each has the same effect: it defines whichever type of collection
object as a named bean, rather than as a property of some other
bean, and populates the collection with the same child elements
as <list>, <set>, and <map> as shown earlier.

 This makes it possible to configure the “Holder” bean using
bean references:

<bean
 id="Holder"
 class="cc.Holder"
 p:names-ref="globalNames"
 p:frequencies-ref="globalFrequencies" />
 p:errors-ref="globalErrors"
/>

 ... and for a second bean “Reuser” to share two of them while
defining its own frequencies map:

<bean id="Reuser" class="cc.Holder" >
 <property name="names" ref="globalNames" />
 <property name="frequencies" >
 <map>
 <entry key="Heads" value="501" />
 <entry key="Tails" value="499" />
 </map>
 </property>
 <property name="errors" ref="globalErrors" />
</bean>

EXAMPLE

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

16

Sharing Information

 Build and test using program arguments to identify the
configuration file and bean to instantiate and dump:

run SeparateBeans.xml Holder

[Sam, Fred, Jane]
{Rock=787, Paper=662, Scissors=1090}
{firstName=[Field is required], lastName=[Field is
required], age=[Field is required, Must be a
positive number]}

run SeparateBeans.xml Reuser

[Sam, Fred, Jane]
{Heads=501, Tails=499}
{firstName=[Field is required], lastName=[Field is
required], age=[Field is required, Must be a
positive number]}

 CrossReference.xml takes a different approach, using the
<util:propertyPath> element.

 This uses a compound property expression in its path attribute to
find a bean property defined elsewhere in the configuration.

 It then exposes that property as a named bean, which can then be
instantiated by the factory, or referenced normally by other beans.

EXAMPLE

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

17

Sharing Information

 So, in this file, the “Holder” bean is the same as it was in Step1.

 The two collections we want to share are exposed as beans:
<util:property-path id="usefulNames"
 path="Holder.names" />
<util:property-path id="usefulErrors"
 path="Holder.errors" />

 The new “Reuser” bean now has something to latch onto using
a property reference:

<bean id="Reuser" class="cc.Holder" >
 <property name="names" ref="usefulNames" />
 <property name="frequencies" >
 <map>
 <entry key="Heads" value="501" />
 <entry key="Tails" value="499" />
 </map>
 </property>
 <property name="errors" ref="usefulErrors" />
</bean>

 Test this configuration and see we get the same effect:
run CrossReference.xml Reuser

[Sam, Fred, Jane]
{Heads=501, Tails=499}
{firstName=[Field is required], lastName=[Field is
required], age=[Field is required, Must be a
positive number]}

EXAMPLE

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

18

The Firing Sequence

Suggested time: 15-30 minutes

In this lab you will improve the CMS from the previous lab, by
making the firing sequence configurable using a list bean. The
controller code will reduce to a very simple loop over the
configured bean, which in turn will link in the transformers and
pipes.

In optional steps you can also flesh out the full set of CMS
pathways, adding a number of XML-to-HTML transformations in
parallel with the text formatting you’ve already done.

Detailed instructions are found at the end of the chapter.

LAB 5A

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

19

Autowiring to Multiple Beans

 A neat trick we’ve not yet had opportunity to demonstrate
involves auto-wiring an array or list of object references.

 An autowired (or @Autowired) property usually resolves to
the one and only bean in its context that matches the desired
type.

 But if the type of the property is an array or a list (with a type
argument – this doesn’t work for Java-1.4 Lists), then the
context will populate that array or list with all beans found in
the context that match the autowiring criteria.

 In Transformer_Step11, we use autowiring to get the firing
sequence for free.

 We do need a new Java class, because, sadly, we can’t auto-wire a
<util:list> in this way. See src/FiringSequence.java; a javap-
style listing is shown below:

public class FiringSequence
{
 public void setSequence (List<XSLTransformer> s);
 public List<XSLTransformer> getSequence ();
}

 We autowire that sequence property, and can drop the
(somewhat redundant) <util:list> that we had going before.
See CMS.xml:

<bean id="firingSequence" class="FiringSequence"
 autowire="byType" />

EXAMPLE

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

20

Autowiring to Multiple Beans

 The controller has been augmented a bit, to make it easy to see
what transforms are actually added to the sequence when it is
autowired:

List<XSLTransformer> firingSequence =
 ((FiringSequence) beanFactory.getBean
 ("firingSequence")).getSequence ();
for (XSLTransformer transformer : firingSequence)
{
 System.out.println
 (... transformer.getSourcePath() ... + " --> "
 + ... transformer.getResultPath () ...);

 transformer.transform ();
}

 For instance, you may wonder, not if we’ll get all the transforms
into the list, but whether they’ll appear in the desired order ...

 Test this final version of the application:
Input/Listings.xml --> Output/Summary.txt
Input/Listings.xml --> Output/Summary.html
Input/Listings.xml --> Output/Detail.txt
Input/Listings.xml --> Output/Detail.html
...
PIPE --> Output/Statistics.html
PIPE --> Output/AccessibleStatistics.txt
PIPE --> Output/AccessibleStatistics.html

 The controller doesn’t echo all the configuration information, but
there’s enough here to confirm that the objects were assembled in
the order in which they were declared, which is good news.

EXAMPLE

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

21

Wholesale Beans

Suggested time: 30-45 minutes

In this lab you will complete the implementation of an application
that processes product orders for a wholesale distribution
company. Client retailers maintain files containing regular orders
for their products of interest, and one of the jobs is to configure the
list of these “feeds.” A fulfillment engine processes these, also
applying a locale-specific tax policy, and produces a sales record.
This is then post-processed to produce an HTML report.

Detailed instructions are found at the end of the chapter.

LAB 5B

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

22

Order of Instantiation

 Often the order in which various beans are created is
unimportant to the application logic.

 But sometimes it matters very much that bean A is created and
initialized before bean B gets a chance to use it.

 Different IoC containers will pursue different policies in this
regard.

 A BeanFactory will instantiate a defined bean only on a call to
getBean.

 Supporting beans are then instantiated on demand – that is, as
necessary to satisfy dependencies of beans as they are created.

 This might be called a lazy instantiation policy.

 We’ll see that an application context is more eager to create
beans, publishing all singletons when created itself.

 This is an eager instantiation policy.

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

23

Controlling Instantiation Timing

 Various attributes can be defined in the configuration to
customize the timing by which the container will create your
beans.

 The primary means of control over the timing of object
creation is the lazy-init attribute, which will convert a
singleton bean from eagerly instantiated to instantiated-on-
demand.

 The default behavior is true (lazy) for a simple bean factory, false
(eager) for an application context.

 You can also define default-lazy-init for an entire configuration
unit.

 Another issue arises when there is a bean dependency that isn’t
apparent from the information in the configuration file.

 Perhaps bean A requires bean B to exist prior to a call it makes on
a third bean, or that a property on B be set before A makes a call to
one of B’s methods.

 None of this would show up in a bean definition for A or B.

 In such cases you can explicitly state the dependency with the
depends-on attribute.

 As in A depends-on=“B”.

 In the JavaBean itself, you can implement an instantiation hook
method – by any of the three techniques discussed in Chapter 3.

 This can be used to trigger additional bean loading, potentially
resulting in a domino chain of beans loading one another.

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

24

Lazy Instantiation

 In Wholesale_Step4, we’ll experiment with instantiation
policies and declarations in the Wholesale application.

 The completed demo is in Wholesale_Step5.

1. Build and run the application, which is just as we left it at the end of
Lab 5C.

Total sales: 10,075.65

2. Now, for each of four classes – cc.sales.Fulfillment,

cc.sales.ListOfBatches, cc.sales.MASalesTax, and
cc.tools.xml.XSLTransformer – add code to print a line to the
console when the class is instantiated. (For MASalesTax you’ll need
to create an explicit no-argument constructor for this purpose.)

3. Build and test again, and see the order in which the objects are
created.

MASalesTax instantiated.
Fulfillment instantiated.
ListOfBatches instantiated.
Total sales: 10,075.65
XSLTransformer instantiated.

4. Not much to surprise us here ... the tax object has to be created before

the fulfillment object can be configured, but otherwise this is create-
on-demand.

DEMO

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

25

Lazy Instantiation

5. Open src/cc/sales/test/TestWholesale.java, and replace
DefaultListableBeanFactory with
FileSystemXmlApplicationContext.

BeanFactory factory =
 new FileSystemXmlApplicationContext
 ("SalesObjects.xml");

 Remember, you’ll have to import this class from
org.springframework.context.support.

6. Try it again:
Transformer instantiated.
MASalesTax instantiated.
Fulfillment instantiated.
ListOfBatches instantiated.
Total sales: 10,075.65

7. Hmm! An application context will eagerly instantiate and configure

all singleton beans. There is no guarantee of the order of
instantiation, but it seems that this factory works from the top of the
configuration file to the bottom.

8. What if the transformer object pre-loaded some or all of its
information? Say we configure it with a source file TotalSales.xml
and it tries to read in the file contents as soon as we give it the
filename. In this order of instantiation, there’s no file to read!

DEMO

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

26

Lazy Instantiation

9. We can convert the transformer back to a create-on-demand policy by
declaring lazy-init for it:

<bean
 id="PostProcessor"
 class="cc.tools.xml.XSLTransformer"
 lazy-init="true"
>

10. Test now:
MASalesTax instantiated.
Fulfillment instantiated.
ListOfBatches instantiated.
Total sales: 10,075.65
Transformer instantiated.

DEMO

© 2006-2015 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

27

SUMMARY

 The ability to assemble graphs of objects, of arbitrary
complexity, completes the IoC container, and it’s with these
features that the value of IoC really comes home:

 Dependency injection

 Populating collections

 Generally, being able to hide all the details of object configuration
behind a few strings, perhaps even one string, the bean name for the
top object of a tree

 As we want to control object creation, we may also want
control over the timing of object creation, and Spring
provides a few means to influence the behavior of the IoC
factory.

 However, when a sequence of creation events must be strictly
followed, it’s a good idea to implement that sequence yourself,
perhaps in an Abstract Factory; then, publish that factory to the IoC
container.

