CHAPTER 3

After completing “Transactions,” you will be able to:

e Describe the Spring approach to unifying transaction
control.

e Implement declarative transactions for a Spring Web
application.

© 2006-2009 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

Transaction Control in Java EE

e Traditionally, Java developers have been faced with some

unpleasant choices when it comes time to implement
transaction control for their applications.

Direct transaction managementvia JDBCis clunky; néarly
unmaintainable, and can’t suppert'multiple databases effectively.

The Java Transactions API;.or JTA; offers support for distributed
transactions (i.e. multiple databases); but is.even less appealing as
an API and carries considerable weight, including a semi-
dependency on JNDI as a way of publishing and sharing
transaction contexts.

e Java EE’s primary solution has been container-managed
transactions in EJB containers, most recently according to the
Java Persistence APIL specification.

This is essentially a JTA solution, but CMT hides the JTA details.

What’s good about CMT is that it recognizes that transactionality
is a cross-cutting concern, a general feature common te
otherwise yery different business objects.

Infact muchof EJB’s deployment descriptor yocabulary-can be
seen as-anearly attempt at aspect-oriented programming:
declarative development in general is about identifying generic
features that can be implemented on behalf of a class, rather than
the class having to seek out and call a reusable utility on its own.

What’s not so good about CMT is that it requires an EJB container,
and hence a full-blown Java EE application server.

© 2006-2009 Will Provost. 3
All Rights Reserved by Capstone Courseware, LLC.

Spring’s Transaction Management

e Spring takes the basic concept of declarative transactions and
runs away with it - it leaves the weight of EJB behind.

— It’s Spring’s philosophy all over again, that-erdinary Java'beans
should enjoy the declarative instantiation, management, services,
lifecycle, and context traditionally feserved for specialized
stereotypes such as servlets andEJBs.

— Spring looks at declarative transactions and asks, “Why can’t
ordinary Java classes have'those?”

e The building blocks of transaction management in Spring are:

— A transaction manager, of which Spring offers many oft-the-
shelf implementations

— A data source or.other transactional resource

— Transaction advice attached to one or more transactional
resources, spelling out'transaction requirements and attributes

o [These can all be supplied declaratively or programmatically.
— Acompletely declarative approach is most common.

e Spring’s transaction model does not require the servicesof a
heavyweight container, as E]JB’s model does.

e However, it cannot support distributed transactions.

— This compromise is acceptable for most applications, which will
only use a single database anyway.

— Or, an application might use several databases, but never need to
coordinate transactions over more than one at a time; that too is
workable with Spring transaction management.

© 2006-2009 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

Declarative Transactions

2.

Steps to implementing transactional behavier for your Spring
application are as follows.

— We'll speak the language of JDBC for the moment; but all the
following concepts map one-for-one to other persistence
techniques, including O/R mapping tools and JPA proper.

. Declare your data source as a global bean — we’ve seen an example of

this already.

Declare a transaction manager and inject the data source into it.

<bean

>

1d=""transactionManager'’

class="org.springframework.jdbc.datasource

-DataSourceTransactionManager"*'

<property name='‘dataSource' ref="dataSource" />

</bean>

3.

For each transactional ¢lass or method, declare transactional advice
and attach thatadvice to the class or method.

There are several alternatives for this last piece.

This is the‘aspect-oriented part of the puzzle, and AOP practice
for Javais eyolving rapidly.

— The longest-standing approach uses Spring-AOP.
— If coding in Java 5, you can use annotations.

— There is also support for AspectJ.

© 2006-2009 Will Provost. 5
All Rights Reserved by Capstone Courseware, LLC.

Spring AOP vs. Annotations

e Spring AOP and Tomcat don’t mix so well.

— The CGLIB code generator eventually draias the “PermGen”
memory space that a Java VM expects to-be reserved for ordinary,
i.e. static, class definitions.

— Successive redeployments to. Tomcat will continually re-generate
AOP classes, and gradually the heap space will be drained.

— This is a non-starter for most professional situations.

e Aspect] doesn’t suffer this embarrassment, but it’s not as
naturally bound to Spring; either.

e The Java-5.0 annetation s actually the new kid on the block,
but it’s a proven, portable, and well-tested feature of the
language.

— The downside’is that annotations live in Java source files, and so
can’t be modified independently of the class.

~ Generally this is'a significant caution regarding the use of
annotations, but they have their place, and transactions are a good
example of appropriate use.

— Transaction attributes, once declared, are not usually volatile,
or if they are changing it’s usually in(concert with significant code
changes anyway.

— Spring’s @Transactional annotation is'dead-simple to use, and
does have the advantage of making it easy to see in source code
and javadoc what interfaces, classes, and methods offer which
transactional characteristics.

© 2006-2009 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

The @Transactional Annotation

¢ org.springframework.transaction.annotation.Transactio
nal can be applied to classes, interfaces, and methods.

public interface Transactional
extends Annotation

{
public Propagation propagation ();
public Isolation isolation ();
public Int timeout ();
public boolean readOnly -();
public Class[] rollbackFor (©);
public String[] rollbackForClassName ();
public Class[] noRol lbackFor (Q);
public String[] noRollbackForClassName ();

— Asyou can see, it can support precise definitions of transactional
behavior, including isolation level and propagation characteristics
(e.g. what happens if a transaction is already in force).

— ~The rollbackForarrayallows you to declare what sorts of
exceptions should trigger rollbacks. The default is.toroll back en
any runtime exception.

e Spring does bend the rules a bit regardinginheritability with
this annotation.

— Itis @Inherited, but Spring also'respects inheritance of
transactionality under interfaces, and for.individual methods; this
is inconsistent with standard annotation processing.

— This is a minor wrinkle, but it can confuse other annotation
processors such as documentation generators.

© 2006-2009 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

Enforcing Transactions [DEMO |

o We’ll conclude our study of persistence tiers.in Spring
applications by adding transaction supportto the Wholesale
application.

— Do your work in Demos/Transactions.

— The completed demo is in Examples/Wholesale/Step3.

1. First, test the transactional behavior of the starter application. You
may have noticed that the database includes-an-overlaid uniqueness
constraint for the ordr table/ duplicate listings of a given product are
not allowed within a feed,~That'is, no\two rows can have the same
feed name and product name.

© 2006-2009 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

Enforcing Transactions [DEMO |

Build and deploy; edit one of the feeds by changing the second item to
have the same product name as the first, then click Done:

I wholesale Order Processing - Mozilla Firefox -0l x|

File Edit Yiew Go Bookmarks Tools Help IG

Wholesale Order Processing

Add, remove, ar edit the orders placed through the channel "Furniture®, and click Daone to
save your changes.

Select Product Price Quantity
u Eutler $720.00 1
[Butler $720.00 3
r Portmanteau $2 40000 1
u Sideboard $1,200.00 1
u Vanity $1,200.00 1
ltermn: [Butler

Price: [720.0

Quantity: E

Done

¥ apache Tomcat/5.5.17 - Error report - Mozilla Firefo - |I:I|£|

File Edit Miew Go Bookmarks Tools Help IG

Javax.servlet.http.Hotpiervlet.service (Hetplervlet. jiﬂ

oot cause —l

org.springframework.dao.DatalntegrityViolationException: Prej
org.springframework. jdbhc.support . 30L3tate3QLEXceptiol
org.springframework. jdbc.support . 30LErrorCode3QLExXce]
org.springframework. jdbc.core.JdbhcTemplate..execute [(Ji™

4 I I k

© 2006-2009 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

Enforcing Transactions [DEMO |

2. You get an error as you run afoul of this constraint. But what’s more
interesting is what’s happened to the data for that feed:.Go to
feeds.jsp again, and edit the same feed. See that all the feed contents
except for the first order are now gone. They missed the boat! When
the error occurred, the process was simply terminated, with one order
in, a bad one rejected, and the rest ofthe-order simply vanished.

3. Open docroot/WEB-INF/Database.xml, and notice that a second
XML namespace is now supported for this decument. This is the
Spring transactions schema,/with the namespace URL:

http://www.springframework.org/schema/tx

4. Declare a transaction‘manager for the web application — the
autowiring will seek out and connect to the data source that’s already
declared:

<bean
id=""transactionManager"
class=""org.springframework. ydbc.datasource
-DataSourceTransactironManager™
autowrre="pyType"
/>

5. And now for the magic words: “annotation-driven.” Declare this one
feature as follows, and it enables Java-5.0 transaction annotations
throughout the application:

<tx:annotation-driven />

© 2006-2009 Will Provost.

All Rights Reserved by Capstone Courseware, LLC. 10

Enforcing Transactions [DEMO |

6. Now, in src/cc/sales/OrderDAO.java, import the @Transactional
annotation:

import org.springframework.transaction
.annotation:Transactional;

7. ...and declare it for all three methodsyas in:

@Transactional
public void save
(List<Order> feed, String feedName)
throws Exception;

8. Build the application and re=populate the‘database:

ant
run PrimeWithData

9. Test the same use case, creating a duplicate product in one of the
existing feeds. You'll get the same error page back, but when you visit
that feed again, you'll see clearly that the transaction was rolled back:
none of your edits were committed to the database, and so-not only
integrity. but consistency has been preserved.

© 2006-2009 Will Provost. 1
All Rights Reserved by Capstone Courseware, LLC.

The JpaTransactionManager

e Spring provides a transaction manager for JPA operations as
well:

<<Interface>>
JpaTransactionManager EntityManagerFactory

~__ createEntityManager()

<<lInterface>>
DataSource

— Ultimately it governs{ransactions over database connections.

— But as a matterof configuration-it can usually just be attached to
an EntityManagerFactory.

— It will query'that object for.its underlying DataSource, and then
monitor connections frony'there.

o This solution snaps into JPA applications just as easily as the
DataSourceTransactionManager does for JDBC
applications.

© 2006-2009 Will Provost.

All Rights Reserved by Capstone Courseware, LLC. 12

Transactions in JPA

e The impact of transactions on JPA code is a little different
though.

e Or, better to say that the impact of nothaving defined
transactions is different.

e JDBC code will execute in the absence of transactions, with
effects that will be determined by vendor-specific settings such
as auto-commit.

e JPA will not carry out any updates without transaction in force.

— EntityManager operations that result in changes - persist,
merge, remove, etc. —will throw the
TransactionRequiredException if a transaction is not in force.

— What happens from there depends on who’s invoking the method
and how they handle the exception.

— For better orworse, Spring’s interceptors actually gebble up. this
excéption in.most cases, resulting in quiet failure rather than a
crash.

o This is why'we’ve not yet seen any capability in the LandUse
application to write data, even when the user executes Add,
Remove, Done, and so forth.

e We’re about to fix that!

© 2006-2009 Will Provost. 13
All Rights Reserved by Capstone Courseware, LLC.

Entity States

o JPA entity instances - as Java objects in memeory - can be in
one of three states: new, managed, detached, and removed.

ey

FIEy

persist
® find, <query> L managed J| rernave rernoved |

close, clear,
<sefializations

detached |

— The managed state is sometimes called the persistent state.

merge
find, <query=

— Only entities in the persistent state can be saved or removed.

As we’ve said, anentitymanager will only carry out write
operations-within a transaction.

But transactions matter to read operations, too = though the
effects are more subtle.

When reading the database, JPA operations will returm entities
that are in one of two states:

— The managed state, if a transaction was in force
— The detached state, otherwise

So the lack of a transaction in one method can result in a failure

in another method, by setting the stage for an attempt to write
on an object that is not in the managed state.

© 2006-2009 Will Provost.

All Rights Reserved by Capstone Courseware, LLC. 1

Extended Persistence Contexts

e One JPA feature, and something that will come up in the lab
exercise in a moment, is the extended persistence context.

e There is an attribute to @PersistenceContext that dictates
how context boundaries should be set — with possible values:

PersistenceContextType.TRANSACTION
PersistenceContextType.EXTENDED

e So far, we’ve been working with persistence contexts whose
context type has been TRANSACTION.

— This means that a persistence ‘context has been created for a given
transactions; and closed or cleared when that transaction has
committed or rolled back.

— Our transactions have been wrapped around individual method
calls, so this has/amounted'to a method-scoped context.

— When a'context closes, all entities in that context become
detached.

¢_ This works fine in'most cases, but when a service or DAO is
statefuland needs to hang on to entities in a persistent state
from one method call to the next, we need a different solution.

¢ One way would be a long-running transaction, but that’s
expensive and can create major concurrency headaches.

e So JPA offers the EXTENDED context, which lives for as long as
the target object lives — that is, we get a bean-scoped context.

— This allows entities once derived to stay “in context” and stay in
the managed state, for use in later method calls.

© 2006-2009 Will Provost. 15
All Rights Reserved by Capstone Courseware, LLC.

LandUse Transaction Advice | LAB 3 |

Suggested time: 45 minutes

In this lab you will complete the LandUse application by
configuring a transaction manager and declaring transaction
advice for individual DAO metheods.

Detailed instructions are found at the end of the ehapter.

© 2006-2009 Will Provost. 16
All Rights Reserved by Capstone Courseware, LLC.

SUMMARY

e Spring’s transaction support strikes a nice balance between
feature set and simplicity.

— The major simplifying assumption is that there’s a single database.

— Thus the lightweight Spring container can support declarative
transactions — just like the big boys! — and with less work.

e While Spring brings different improvements to JDBC versus
JPA (or proprietary ORM) coding, the value-add of

— Neither J]DBC nor JPA defines a built-in transaction manager.

— They both rely on outside agents for transaction control, and they
both have APIs for engaging with those outside agents.

— Spring can be that agent, replacing an EE application server in this
function.

— Spring also makes transactions — and DAO support in general -
available to any Java class, and not just to a select few types of
managed object as in Java EE.

transaction control via Spring is more consistent, regardless.

© 2006-2009 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

