
CHAPTER 3

TRANSACTIONS

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

2

OBJECTIVES

After completing “Transactions,” you will be able to:

• Describe the Spring approach to unifying transaction
control.

• Implement declarative transactions for a Spring Web
application.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

3

Transaction Control in Java EE

• Traditionally, Java developers have been faced with some
unpleasant choices when it comes time to implement
transaction control for their applications.

− Direct transaction management via JDBC is clunky, nearly
unmaintainable, and can’t support multiple databases effectively.

− The Java Transactions API, or JTA, offers support for distributed
transactions (i.e. multiple databases), but is even less appealing as
an API and carries considerable weight, including a semi-
dependency on JNDI as a way of publishing and sharing
transaction contexts.

• Java EE’s primary solution has been container-managed
transactions in EJB containers, most recently according to the
Java Persistence API specification.

− This is essentially a JTA solution, but CMT hides the JTA details.

− What’s good about CMT is that it recognizes that transactionality
is a cross-cutting concern, a general feature common to
otherwise very different business objects.

− In fact much of EJB’s deployment descriptor vocabulary can be
seen as an early attempt at aspect-oriented programming:
declarative development in general is about identifying generic
features that can be implemented on behalf of a class, rather than
the class having to seek out and call a reusable utility on its own.

− What’s not so good about CMT is that it requires an EJB container,
and hence a full-blown Java EE application server.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

4

Spring’s Transaction Management

• Spring takes the basic concept of declarative transactions and
runs away with it – it leaves the weight of EJB behind.

− It’s Spring’s philosophy all over again, that ordinary Java beans
should enjoy the declarative instantiation, management, services,
lifecycle, and context traditionally reserved for specialized
stereotypes such as servlets and EJBs.

− Spring looks at declarative transactions and asks, “Why can’t
ordinary Java classes have those?”

• The building blocks of transaction management in Spring are:

− A transaction manager, of which Spring offers many off-the-
shelf implementations

− A data source or other transactional resource

− Transaction advice attached to one or more transactional
resources, spelling out transaction requirements and attributes

• These can all be supplied declaratively or programmatically.

− A completely declarative approach is most common.

• Spring’s transaction model does not require the services of a
heavyweight container, as EJB’s model does.

• However, it cannot support distributed transactions.

− This compromise is acceptable for most applications, which will
only use a single database anyway.

− Or, an application might use several databases, but never need to
coordinate transactions over more than one at a time; that too is
workable with Spring transaction management.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

5

Declarative Transactions

• Steps to implementing transactional behavior for your Spring
application are as follows.

− We’ll speak the language of JDBC for the moment; but all the
following concepts map one-for-one to other persistence
techniques, including O/R mapping tools and JPA proper.

1. Declare your data source as a global bean – we’ve seen an example of
this already.

2. Declare a transaction manager and inject the data source into it.
<bean
 id="transactionManager"
 class="org.springframework.jdbc.datasource
 .DataSourceTransactionManager"
>
 <property name="dataSource" ref="dataSource" />
</bean>

3. For each transactional class or method, declare transactional advice

and attach that advice to the class or method.

• There are several alternatives for this last piece.

• This is the aspect-oriented part of the puzzle, and AOP practice
for Java is evolving rapidly.

− The longest-standing approach uses Spring AOP.

− If coding in Java 5, you can use annotations.

− There is also support for AspectJ.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

6

Spring AOP vs. Annotations

• Spring AOP and Tomcat don’t mix so well.

− The CGLIB code generator eventually drains the “PermGen”
memory space that a Java VM expects to be reserved for ordinary,
i.e. static, class definitions.

− Successive redeployments to Tomcat will continually re-generate
AOP classes, and gradually the heap space will be drained.

− This is a non-starter for most professional situations.

• AspectJ doesn’t suffer this embarrassment, but it’s not as
naturally bound to Spring, either.

• The Java-5.0 annotation is actually the new kid on the block,
but it’s a proven, portable, and well-tested feature of the
language.

− The downside is that annotations live in Java source files, and so
can’t be modified independently of the class.

− Generally this is a significant caution regarding the use of
annotations, but they have their place, and transactions are a good
example of appropriate use.

− Transaction attributes, once declared, are not usually volatile,
or if they are changing it’s usually in concert with significant code
changes anyway.

− Spring’s @Transactional annotation is dead-simple to use, and
does have the advantage of making it easy to see in source code
and javadoc what interfaces, classes, and methods offer which
transactional characteristics.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

7

The @Transactional Annotation

• org.springframework.transaction.annotation.Transactio
nal can be applied to classes, interfaces, and methods.

public interface Transactional
 extends Annotation
{
 public Propagation propagation ();
 public Isolation isolation ();
 public int timeout ();
 public boolean readOnly ();
 public Class[] rollbackFor ();
 public String[] rollbackForClassName ();
 public Class[] noRollbackFor ();
 public String[] noRollbackForClassName ();
}

− As you can see, it can support precise definitions of transactional
behavior, including isolation level and propagation characteristics
(e.g. what happens if a transaction is already in force).

− The rollbackFor array allows you to declare what sorts of
exceptions should trigger rollbacks. The default is to roll back on
any runtime exception.

• Spring does bend the rules a bit regarding inheritability with
this annotation.

− It is @Inherited, but Spring also respects inheritance of
transactionality under interfaces, and for individual methods; this
is inconsistent with standard annotation processing.

− This is a minor wrinkle, but it can confuse other annotation
processors such as documentation generators.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

8

Enforcing Transactions

• We’ll conclude our study of persistence tiers in Spring
applications by adding transaction support to the Wholesale
application.

− Do your work in Demos/Transactions.

− The completed demo is in Examples/Wholesale/Step3.

1. First, test the transactional behavior of the starter application. You
may have noticed that the database includes an overlaid uniqueness
constraint for the ordr table: duplicate listings of a given product are
not allowed within a feed. That is, no two rows can have the same
feed name and product name.

DEMO

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

9

Enforcing Transactions

Build and deploy; edit one of the feeds by changing the second item to
have the same product name as the first, then click Done:

DEMO

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

10

Enforcing Transactions

2. You get an error as you run afoul of this constraint. But what’s more
interesting is what’s happened to the data for that feed. Go to
feeds.jsp again, and edit the same feed. See that all the feed contents
except for the first order are now gone. They missed the boat! When
the error occurred, the process was simply terminated, with one order
in, a bad one rejected, and the rest of the order simply vanished.

3. Open docroot/WEB-INF/Database.xml, and notice that a second
XML namespace is now supported for this document. This is the
Spring transactions schema, with the namespace URI:

http://www.springframework.org/schema/tx

4. Declare a transaction manager for the web application – the

autowiring will seek out and connect to the data source that’s already
declared:

<bean
 id="transactionManager"
 class="org.springframework.jdbc.datasource
 .DataSourceTransactionManager"
 autowire="byType"
/>

5. And now for the magic words: “annotation-driven.” Declare this one

feature as follows, and it enables Java-5.0 transaction annotations
throughout the application:

<tx:annotation-driven />

DEMO

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

11

Enforcing Transactions

6. Now, in src/cc/sales/OrderDAO.java, import the @Transactional
annotation:

import org.springframework.transaction
 .annotation.Transactional;

7. ... and declare it for all three methods, as in:
@Transactional
public void save
 (List<Order> feed, String feedName)
 throws Exception;

8. Build the application and re-populate the database:
ant
run PrimeWithData

9. Test the same use case, creating a duplicate product in one of the

existing feeds. You’ll get the same error page back, but when you visit
that feed again, you’ll see clearly that the transaction was rolled back:
none of your edits were committed to the database, and so not only
integrity but consistency has been preserved.

DEMO

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

12

The JpaTransactionManager

• Spring provides a transaction manager for JPA operations as
well:

JpaTransactionManager

DataSource
<<Interface>>

EntityManagerFactory

createEntityManager()

<<Interface>>

− Ultimately it governs transactions over database connections.

− But as a matter of configuration it can usually just be attached to
an EntityManagerFactory.

− It will query that object for its underlying DataSource, and then
monitor connections from there.

• This solution snaps into JPA applications just as easily as the
DataSourceTransactionManager does for JDBC
applications.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

13

Transactions in JPA

• The impact of transactions on JPA code is a little different
though.

• Or, better to say that the impact of not having defined
transactions is different.

• JDBC code will execute in the absence of transactions, with
effects that will be determined by vendor-specific settings such
as auto-commit.

• JPA will not carry out any updates without transaction in force.

− EntityManager operations that result in changes – persist,
merge, remove, etc. – will throw the
TransactionRequiredException if a transaction is not in force.

− What happens from there depends on who’s invoking the method
and how they handle the exception.

− For better or worse, Spring’s interceptors actually gobble up this
exception in most cases, resulting in quiet failure rather than a
crash.

• This is why we’ve not yet seen any capability in the LandUse
application to write data, even when the user executes Add,
Remove, Done, and so forth.

• We’re about to fix that!

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

14

Entity States

• JPA entity instances – as Java objects in memory – can be in
one of three states: new, managed, detached, and removed.

− The managed state is sometimes called the persistent state.

− Only entities in the persistent state can be saved or removed.

• As we’ve said, an entity manager will only carry out write
operations within a transaction.

• But transactions matter to read operations, too – though the
effects are more subtle.

• When reading the database, JPA operations will return entities
that are in one of two states:

− The managed state, if a transaction was in force

− The detached state, otherwise

• So the lack of a transaction in one method can result in a failure
in another method, by setting the stage for an attempt to write
on an object that is not in the managed state.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

15

Extended Persistence Contexts

• One JPA feature, and something that will come up in the lab
exercise in a moment, is the extended persistence context.

• There is an attribute to @PersistenceContext that dictates
how context boundaries should be set – with possible values:

PersistenceContextType.TRANSACTION
PersistenceContextType.EXTENDED

• So far, we’ve been working with persistence contexts whose
context type has been TRANSACTION.

− This means that a persistence context has been created for a given
transactions, and closed or cleared when that transaction has
committed or rolled back.

− Our transactions have been wrapped around individual method
calls, so this has amounted to a method-scoped context.

− When a context closes, all entities in that context become
detached.

• This works fine in most cases, but when a service or DAO is
stateful and needs to hang on to entities in a persistent state
from one method call to the next, we need a different solution.

• One way would be a long-running transaction, but that’s
expensive and can create major concurrency headaches.

• So JPA offers the EXTENDED context, which lives for as long as
the target object lives – that is, we get a bean-scoped context.

− This allows entities once derived to stay “in context” and stay in
the managed state, for use in later method calls.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

16

LandUse Transaction Advice

Suggested time: 45 minutes

In this lab you will complete the LandUse application by
configuring a transaction manager and declaring transaction
advice for individual DAO methods.

Detailed instructions are found at the end of the chapter.

LAB 3

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

17

SUMMARY

• Spring’s transaction support strikes a nice balance between
feature set and simplicity.

− The major simplifying assumption is that there’s a single database.

− Thus the lightweight Spring container can support declarative
transactions – just like the big boys! – and with less work.

• While Spring brings different improvements to JDBC versus
JPA (or proprietary ORM) coding, the value-add of
transaction control via Spring is more consistent, regardless.

− Neither JDBC nor JPA defines a built-in transaction manager.

− They both rely on outside agents for transaction control, and they
both have APIs for engaging with those outside agents.

− Spring can be that agent, replacing an EE application server in this
function.

− Spring also makes transactions – and DAO support in general –
available to any Java class, and not just to a select few types of
managed object as in Java EE.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

18

LandUse Transaction Advice

In this lab you will complete the LandUse application by configuring a transaction
manager and declaring transaction advice for individual DAO methods.

Lab workspace: Labs/Lab3

Backup of starter code: Examples/LandUse/Step2

Answer folder(s): Examples/LandUse/Step3

Files: docroot/WEB-INF/LandUse-servlet.xml
src/gov/usda/usfs/landuse/jpa/ProposalServiceImpl.java
src/gov/usda/usfs/landuse/jpa/LandUseServiceImpl.java

Instructions:

1. Build and test the starter version of the application; this is exactly as we left it at the
end of the demonstration in the previous chapter. Try a couple of use cases in
particular – browser screenshots and snippets from the server console are shown for
each:

 Choose a proposal and click Remove.

SEVERE: Exception in request processing.
java.lang.IllegalArgumentException: Entity must be managed to call
remove: (1,Green Mountain NF,Ski USA,Alpine park), try merging the
detached and try the remove again.

 Choose a proposal and click Edit. Then, make a change to one of the fields and
click Done.

oracle.toplink.essentials.exceptions.ValidationException
Exception Description: Cannot persist detached object ...

Both of these failures result from a lack of transaction control.

LAB 3

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

19

LandUse Transaction Advice LAB 3

2. Open LandUse-servlet.xml and add a transaction manager to the application
context:

 <bean
 id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager"
 autowire="byType"
 />

The effect of autowiring here is to connect the transaction manager to the entity
manager factory that’s already in place.

3. Add the declaration that lets Spring know that we’ll attach transaction advice to
classes and methods using Java annotations:

 <tx:annotation-driven />

4. Build and test the Remove button again ... no joy, and of course we wouldn’t expect

much change yet, since we’ve not actually given any transaction advice.

5. Open LandUseServiceImpl.java, and add the @Transactional annotation to the
withdraw method.

@Transactional
public void withdraw (int ID)

6. Build and test again, and you should see that Remove works now.

7. Open ProposalServiceImpl.java, and mark update as @Transactional.

8. Build and test the Edit/Done use case – hmm, still no dice. update calls em.persist
in an attempt to save changes to the model object. This call does require a
transaction, and you’re now having Spring provide one. But it also requires a
managed object, and model is not currently in the managed state.

Why not? Where did we get the model, and how do we know it is or isn’t in a
managed state? It was derived in an earlier call to init – and, no, that method’s not
transactional. So we have a detached object, and hence the failure when we try to save
changes.

Java Persistence with Spring SpringDB Chapter 3

© 2006-2009 Will Provost.
All rights reserved by Capstone Courseware, LLC.

20

LandUse Transaction Advice LAB 3

9. Mark init as being @Transactional as well, and test again. No? Still not working?

One last mystery to solve here, and this is where the extended persistence context
comes into play. It’s fine (and necessary) to mark both init and update as
transactional: the first one must initialize model to an entity in the managed state,
and the second must write that object, so they each need a transaction. The
remaining problem is not really about transaction boundaries, but context
boundaries: the model is initially managed, but is detached from the context after init
returns.

10. Solve this by making the context used by ProposalServiceImpl extended:
@PersistenceContext (type=PersistenceContextType.EXTENDED)
private EntityManager em;

Import PersistenceContextType from javax.persistence.

11. Build and test. Now you see that you can save changes through the Done command.

12. You can carry this exercise forward as far as you like, and gradually bring the editing

features of the application online. The remaining methods that will need to be
transactional are:

 On LandUseServiceImpl, methods getAll, getProposal, and submit

 On ProposalServiceImpl, methods decide, addPublicComment, and
addProfessionalComment

