
CHAPTER 4

ENTITY MANAGERS

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

2

OBJECTIVES

After completing “,” you will be able to:

 Write a persistence.xml file to declare persistence units and
their elements.

 Describe the purpose of the persistence context.

 Create an entity manager factory, entity manager, and entity
transaction.

 Use transactions, rollback, and entity state effectively.

 Use entity manager “CRUD” operations.

 Explain database synchronization, and when it takes place.

 Describe the details of detachment and merging during the
entity lifecycle.

 Define and execute JPA queries.

 Pass parameters to queries.

 Explain why named queries are superior to dynamic queries.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

3

Putting Entities to Work

 We are now going to use our annotated entities for CRUD
(Create, Retrieve, Update, and Delete) operations.

 Let's examine the persistence system in more detail.

persistence.jar

javax.persistence

Persistence Provider Jar

javax.persistence.spi

RDB

com.application

Entity

META-INF/
persistence.xml

JDBC

 META-INF/persistence.xml records a lot of the information
we need in order to run our applications.

 There can be more than one persistence.xml file in an
application, but is common to have only one.

 It contains the name or names of one or more persistence units
that we will utilize in our application.

 The persistence.xml file can name the persistence provider
to use in the application – or a default provider will be used.

 Depending on its type, the persistence.xml can go on to name
the JDBC driver and database to be used.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

4

The persistence.xml File

 In Earthlings_Step5/src/META-INF, we find the
persistence.xml file, and possibly others as well; see the
listing on the following page.

 The transaction type of this persistence unit is
RESOURCE_LOCAL, which is typical for Java SE applications.

 The persistence provider is not specified, which leaves it to
be detected at runtime.

 In our case we assure that Hibernate is the first JPA provider on
the run-time class path.

 We could instead include a <provider> element whose value
would be the class name of the desired PersistenceProvider
implementation – such as ...

org.eclipse.persistence.jpa.PersistenceProvider
org.hibernate.ejb.HibernatePersistence
org.apache.openjpa
 .persistence.PersistenceProviderImpl

 Notice that two such elements are prepared, inside an XML
comment, in all of our persistence.xml files, so that you can easily
force use of either EclipseLink or Hibernate in testing.

EXAMPLE

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

5

The persistence.xml File

 The class file names for the entities are shown next, with one
<class> element for each entity.

 An alternative is to list none of them; the following triple-negative
phrase essentially tells the provider to scan the class path for JPA-
annotated classes, including entities, embeddables, and converters:

 <exclude-unlisted-classes>false
 </exclude-unlisted-classes>

 We see several <property> elements where the name starts
with javax.persistence; these are standard elements defined
by the JPA specification.

 Vendor-specific <property> elements are often included as
well.

EXAMPLE

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

6

The persistence.xml File
<persistence-unit
 name="EarthlingsPU"
 transaction-type="RESOURCE_LOCAL"
>
 <!-- Comment with specific <providers> -->

 <class>cc.hr.entity.Address</class>
 ...
 <class>cc.hr.entity.Project</class>

 <properties>
 <property
 name="javax.persistence.jdbc.url"
 value="jdbc:derby://localhost:1527/Capstone"
 />
 <property
 name="javax.persistence.jdbc.user"
 value="earthlings"
 />
 <property
 name="javax.persistence.jdbc.password"
 value="earthlings"
 />
 <property
 name="javax.persistence.jdbc.driver"
 value="org.apache.derby.jdbc.ClientDriver"
 />
 <property
 name="eclipselink.logging.level"
 value="WARNING"
 />
 </properties>
</persistence-unit>

EXAMPLE

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

7

The persistence.xml File

 Or, if you’ve configured the labs for Oracle as described in
Chapter 1, you’ll see a few differences.

 If configured for Derby, you can still see the Oracle version of the
file in rdbms/oracle/META-INF.

 This version includes some placeholder tokens that get replaced
with the content shown below when you re-configure for Oracle.

 Naturally, a couple of the properties will need to be different:
 <property
 name="javax.persistence.jdbc.driver"
 value="oracle.jdbc.driver.OracleDriver"
 />
 <property
 name="javax.persistence.jdbc.url"
 value="jdbc:oracle:thin:@localhost:1521:xe"
 />

 Or a specific name or IP address may be seen instead of localhost,
depending on your Oracle configuration as in Chapter 1.

 There’s also a reference to a second file:
 <mapping-file>META-INF/orm.xml</mapping-file>

EXAMPLE

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

8

The persistence.xml File

 In that orm.xml file, you see an example of the ability to
override mapping metadata as stated in source-code
annotations.

 All of the entities in this project are defined to rely on Derby’s
identity column feature in order to generate new IDs.

 @Id
 @GeneratedValue(strategy=GenerationType.IDENTITY)
 private int id;

 For Oracle, this won’t work, and rather than replacing all the entity
classes in order to control those annotations, we can override by
stating different metadata for those specific spots:

<entity-mappings ... >

 <package>cc.hr.entity</package>

 <entity class="Location">
 <attributes>
 <id name="id">
 <generated-value strategy="SEQUENCE"
 generator="locationGen" />
 <sequence-generator
 name="locationGen"
 sequence-name="location_sequence"
 allocation-size="1"
 />
 </id>
 </attributes>
 </entity>
 ...
</entity-mappings>

EXAMPLE

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

9

JTA Persistence Units

 A JTA (Java Transaction API) version of the persistence.xml
file might look like this:

 <persistence-unit
 name="EarthlingsPU"
 transaction-type="JTA"
 >
 <jta-data-source>jdbc/EarthlingsDS
 </jta-data-source>
 </persistence-unit>

 This type of persistence unit is seen in the Java EE
environment, where JTA data sources are used.

 We’re telling the JPA provider that it can expect transactions to be
managed externally, for example by an EJB or Spring container.

 In turn, the provider will prohibit use of the EntityTransaction
API made available by the entity manager for transaction control –
saying, essentially, you can’t implement them manually if they are
already being managed automatically.

 Also, in Java EE, the application server will automatically find
the entity classes, so they do not need to be specified.

 That is, the default for <exclude-unlisted-classes> is false in
a Java-EE container.

 So you don’t need to list the classes or state this directive as you
might for Java SE; but note that even under Java SE most providers
will find all local entities even if they are not explicitly listed.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

10

Creating the Entity Manager

 Entity managers perform all the real work of CRUD operations,
and are configured to read and write to the database.

javax.persistence

EntityManagerFactory

EntityManager

PersistenceContext

Persistence

*

1

Persistence Unit

1
*

1

*

1
1

Entity

*

1

Configuration
persistence.xml can
contain many
Persistence Units

 The set of managed entity instances within the entity manager
are known as the persistence context.

 It is possible for a single persistence context to be associated with
more than one entity manager, but we will not concern ourselves
with this detail for now.

 It is guaranteed that only one instance of an entity with the same
persistent identity will exist in this persistence context at one time.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

11

Creating the Entity Manager

 We use the Persistence class to create an
EntityManagerFactory, according to the configuration of its
associated persistence unit:

EntityManagerFactory emf = Persistence.
 createEntityManagerFactory("EarthlingsPU");
EntityManager em = emf.createEntityManager();

 There is a one-to-one correspondence between the persistence
unit and its EntityManagerFactory.

 EntityManagerFactory then creates an EntityManager.

javax.persistence.EntityManager

clear() : void
close() : void
contains() : boolean
createNamedQuery(java.lang.String) : Query
createQuery(java.lang.String) : Query
detach(java.lang.Object entity) : void
find(java.lang.Class<T>,
 java.lang.Object) : <T> T
flush() : void
getTransaction() : EntityTransaction
isOpen() : boolean
merge(T entity) : <T>T
persist(java.lang.Object) : void
refresh(java.lang.Object) : void
remove(java.lang.Object) : void
...

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

12

Where’s Hibernate?

 Developers who’ve used Hibernate in pre-JPA days may well
wonder how Hibernate fits into this picture.

 The responsibilities of the Hibernate Session are quite similar
to those of the JPA EntityManager – and in fact one is actually
implementing the other.

 EntityManager exposes this, in one small way: through its
getDelegate method, which reveals the vendor-specific object
to which the public entity manager methods delegate.

 For Hibernate this is
org.hibernate.internal.SessionImpl

 ... which acts as an adapter between the JPA interface and
Hibernate implementation.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

13

Showing Generated SQL

 It is also possible to pass a Map of properties to the
createEntityManagerFactory method.

 The property names are the same as those that can be used in
persistence.xml.

 Any properties defined in this map will override properties with
matching names in the XML.

 For example, we can ask the JPA provider to show generated
SQL.

 The property names and values vary by provider.

 It is fine to set a superset of those for multiple providers, as any
properties not understood by a JPA provider will be ignored.

 You might then trigger these property settings dynamically,
based on a command-line argument or system property.

 A common combination for Hibernate is:
Map<String,String> properties = new HashMap<>();
properties.put("hibernate.show_sql", "true");
properties.put("hibernate.format_sql", "true");
emf = Persistence.createEntityManagerFactory
 (puName, properties);

 Or, directly in persistence.xml:
<property name="hibernate.show_sql" value="true"/>
<property name="hibernate.format_sql" value="true"/>

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

14

Entity State

 An instance of a JPA entity class can be in one of a few states,
as defined by the specification and as pertains to their
relationship to the entity manager.

 When an entity manager is aware of an instance, and is actively
managing interactions with it, that entity is said to be in the
managed state, and several promises are made:

 There must be a row in the corresponding database table with the
primary key of that entity instance in memory.

 There will only be one managed instance of that entity class with
that primary key; the entity manager maintains an entity cache.

 This guards against inconsistent data in memory that would
eventually cause consistency problems in the database itself.

 It also has a small performance advantage, because the entity
manager can avoid repeated queries for the same entity.

 The cache lives as long as the persistence context exists – which,
depending on certain configuration details, will be for the duration
of a transaction, the life of the entity manager, or longer.

 Any change made to the state of the object while “under
management” are automatically durable: for example, calling a
setter method will result in a SQL update on that entity, perhaps
immediately or perhaps just before transaction commit.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

15

Entity State

 An entity instance that is not actively managed must be in one
of three other states, characterized by the object’s relationship
to a row in the database.

 If the object’s primary key identifies a row in the database, then the
object is detached – not managed, but still a representation of
that row of data in the database.

 If there was such a row in the database, but there is no longer, then
we’re looking at a removed entity: the Java object still exists in
memory but only as an echo of deleted data.

 If there will be such a row in the database, then we say the entity
instance is in the new state, and a future operation will create the
corresponding row.

 Non-managed entities function more or less as normal Java
objects, and can be used by code that is not aware of JPA or
persistence concerns generally.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

16

State Transitions

 The following diagram summarizes possible state transitions
for entities, as they move through typical CRUD operations:

Detached

New

Managed Removed

new

persist()

Database delete

detach() (2.0)
close()
clear()
serialization

Update query

Entity API
flush()
lock() (2.0)

refresh()

remove()

merge()

find()
Query

find()
Query

persist()

 We discuss various transitions on the following pages.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

17

State Transitions

 When you load an entity, either using the find method or by
executing a query in whose results the entity is returned, you
can get one of two entity states.

 If a transaction is in force, the entity will be managed, so that
you can make changes to it and be assured of durability.

 Otherwise it will be in the detached state, which is appropriate for
read-only usage.

 A number of operations will cause a managed entity to become
detached:

 Calling detach on the entity manager for that entity

 Calling clear on the entity manager (affects all managed entities)

 Calling close on the entity manager (affects all managed entities) –
unless an “extended” persistence context is in force, on which
more in a later chapter

 Completing a transaction when the persistence context is
transaction-bounded, as it usually is in EE environments

 Serializing and then de-serializing the entity itself (existing
entity unaffected, new instance produced by de-serialization is
detached)

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

18

State Transitions

 A detached entity can be merged into a persistence context, by
calling merge on the entity manager.

 This ultimately triggers a SQL UPDATE to that database row.

 This method is unusual in that it does not directly effect a state
transition on the given entity.

 Rather, it returns a managed entity based on the detached one
you provide; you must be careful to use the returned entity going
forward, if you want durability.

 You can get a new entity into the persistence context in two
ways, both of which will trigger a SQL INSERT:

 Call persist on the entity manager. Any generated IDs will be filled
in for you and you can use the existing instance as a managed
entity from there.

 Call merge on the entity manager. This method works with
detached entities, as above; but it will also work for a new entity.
To get the managed entity, again, you must read the return value.

 Call the remove method to issue a SQL DELETE, and to move
the entity into the removed state.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

19

State Transitions

 A commit during a transaction forces a flush of the persistence
context and a commit in the database.

 Anytime the persistence provider generates SQL to execute on the
database, the persistence context has been flushed.

 SQL is generated to complete the transaction on the database that
corresponds to the entity transaction.

 Any subsequent operations will incorporate these changes.

 The refresh method will update all managed entities with state
from the database, overwriting potential state changes.

 Use care when executing because it is possible to lose
uncommitted changes made to an entity.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

20

Transactions

 JPA applications and components manage transactions either
programmatically or declaratively.

 In the programmatic approach – also known as an
application-managed transaction – we use the
EntityTransaction service.

 This is not dissimilar to the way it would be done using JDBC or
ANSI SQL commands: you call methods to begin, commit, and
possibly to roll back your transactions, explicitly.

 The persistence unit must have the RESOURCE_LOCAL
transaction type.

 This approach is more common for Java SE applications, and can
be used in EE contexts as well. We’ll work with application-
managed transactions for this and the next few chapters.

 In the declarative approach, a container-managed
transaction will function to our specifications as provided in
metadata.

 Here the persistence unit will have the JTA ttransaction type, and
the entity manager will not allow use of EntityTransaction.

 Instead, the component will use the JTA @Transactional or
possibly other annotations to set policies for starting, propagating,
isolating, and committing transactions.

 We’ll consider this in a later chapter, when we have a Java EE
application server to support our code.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

21

Programmatic Transaction Control

 Call getEntityTransaction on the entity manager for access to
the EntityTransaction.

EntityTransaction

begin() : void
commit() : void
getRollbackOnly : boolean
isActive() : boolean
rollback() : void

 begin and commit start and end a transaction, respectively.

 A RollbackException will be thrown if commit fails.

 To avoid a RollbackException, call the getRollbackOnly method
to determine if the transaction is in a failed state.

 If necessary, the transaction can be rolled back using rollback.

 A PersistenceException will be thrown if rollback fails.

 isActive returns true if a transaction is active.

 If you attempt to start a new transaction while isActive is true, an
IllegalStateException will be thrown.

 We will see a use of the isActive method on the next page.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

22

Programmatic Transaction Control

 This leads to a typical code structure involving a system of
try/catch/finally blocks, to control the entity manager’s and
transaction’s lifecycles:

EntityManager em = null;
EntityTransaction et = null;
try
{
 em = emf.createEntityManager ();
 et = em.getEntityTransaction ();
 et.begin ();
 // Carry out operations here
 et.commit ();
}
catch (Exception ex) // or more specific type(s)
{
 if (et != null && et.isActive ())
 et.rollback ();
 // Logging and other handling here
}
finally
{
 if (em != null)
 em.close ();
}

 There are a few variants on this theme, such as working with a
provided entity manager (and most likely not closing it), or
catching optimistic-locking exceptions.

 We’ll see plenty more examples as we move ahead.

 Sadly, as of JPA 2.1, neither EntityManagerFactory nor
EntityManager implements the Java-7 AutoCloseable interface,
and so try-with-resources, so helpful in JDBC, is not an option.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

23

Transactions and Entity States

 CRUD operations require as much care as they would if you
were using SQL directly, or JDBC.

 Database constraints, especially foreign-key and not-null
constraints, will trigger an exception if they are violated.

 Updating or deleting entities that have relationships can be
especially troublesome, until you gain some experience.

 You must use EntityManager operations in the context of a
transaction as outlined on the next page if they mutate data.

commit()
rollback()
close()

Managed Removed

commit()

Detached

rollback()

remove()

Database delete

 Transactional operations must be used with managed entities
to have entity operations coordinated with database operations.

 Either a commit or rollback call can result in managed
entities becoming detached as a transaction-bounded
persistence context will then be closed.

 If an entity has been removed, pending a database delete,
commit will result in its deletion while rollback will result
instead in detaching the entity.

 This accords with the definition of a detached entity as one that
still relates by primary key to a row in the database.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

24

Earthlings in Action

 CRUD operations involve managed entities that typically have
relationships with other entities.

 The operations have to respect underlying constraints and
relationships or they will throw an exception.

 All entities and their associated entities should be managed.

 We’ll work in Earthlings_Step5 and try a few entity
operations.

 The completed demo is in Earthlings_Step6.

 src/cc/hr/client/EmployeeManager.java shows us what
might be a typical business operation: add a new employee and
new job to an existing department.

 We call the method in the main method, after booting up an
entity manager factory and an entity manager:

 emf = createEntityManagerFactory("EarthlingsPU");
 em = emf.createEntityManager();
 ...
 addEmployeeAndJob(em, "Provost", "Marshal",
 Gender.M, "Security", 80000, 110000);

 As shown on the following page, this method ...

 Creates and populates a Job

 Creates and populates an Employee, including the embedded
Address

 Calls em.persist to add both objects to the database

DEMO

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

25

Earthlings in Action
 public static void addEmployeeAndJob
 (EntityManager em, String firstName,
 String lastName, Gender gender,
 String jobName, long minimumSalary,
 long maximumSalary)
 {
 em.clear();
 EntityTransaction et = em.getTransaction();

 et.begin();
 Job job = new Job
 (jobName, minimumSalary, maximumSalary);
 Employee emp = new Employee
 (firstName, lastName, gender,
 em.find(Department.class, 1), job);
 Address adr = new Address();
 adr.setState(State.GA);
 emp.setAddress(adr);

 em.persist(emp);
 em.persist(job);
 et.commit();

 et.begin();
 em.remove(emp);
 em.remove(job);
 et.commit();
 ...
 }

DEMO

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

26

Earthlings in Action

1. Run cc.hr.client.EmployeeManager as a Java application.
Adding Provost Marshal and Security
WARN: HHH000437: Attempting to save one or more
entities that have a non-nullable association with
an unsaved transient entity. The unsaved transient
entity must be saved in an operation prior to
saving these dependent entities.

 In other words, when we attempted to persist emp, the primary
key (ID property) of the job object was null.

 Hibernate tried to use this value as the foreign key, which is
required in the EMPLOYEES table, and failed at that point.

 Since persist triggers the a SQL INSERT, persisting job first is
important because the database will only create the JOBS primary
key after the row is inserted in the database.

 Then that ID will be filled in on the job object by the provider, and
be available as the foreign-key value for the second INSERT.

DEMO

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

27

Earthlings in Action

 Both entity transactions and database transactions are units of
work, and both have to complete successfully or rollback.

 As bad as we may feel that we still have to consider the
underlying database, it is often unavoidable when it comes time
to debug a problem.

 Note that a JPA provider may change the sequence of operations
against the underlying database, which can allow it to handle some
out-of-order JPA operations gracefully.

 But it’s never safe to write JPA code such as what we have here.

DEMO

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

28

Earthlings in Action

2. Fix the method by exchanging the two calls to persist:
 et.begin();
 Job job = new Job(jobName, minimumSalary,
 maximumSalary);
 Employee emp = new Employee(firstName, lastName,
 gender, em.find(Department.class, deptId),
 job);
 em.persist(job);
 em.persist(emp);
 et.commit();

 The code above now works correctly, with any JPA provider.
Adding Provost Marshal and Security
Removed Provost Marshal, Security

 Notice too that the remove operations that are left in here (to clean
up and make this application’s behaviors repeatable for testing) are
already in the correct order: first in, last out ...

 et.begin();
 em.remove(emp);
 em.remove(job);
 et.commit();

 There are a few other test operations of a similar nature on this
class, whose code may be worth a quick look.

 Of these note that addEmployeeAndJobToDepartment has the
same bug in it that we just fixed, with two persist calls out of
order.

DEMO

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

29

Creating Queries

 In addition to the find method, the entity manager gives you a
handful of ways in which to create Query objects, which then
can be executed and their results processed.

 Create dynamic queries using the Java Persistence Query
Language, or JPQL.

 This is a SQL-like language that is also object-oriented, speaking
in terms of entities and properties, rather than tables and columns.

 Call createQuery to parse a JPQL string into a structured query.
List<Job> results = em.createQuery
 ("select j from Job j", Job.class);

 You can immediately execute and process results, with
getResultList for possibly multiple results, or with
getSingleResult when you’re certain to get exactly one row.

 The TypedQuery object that you get from createQuery also
supports other methods, in a fluent-API design that allows you to
chain calls that fine-tune the query before executing it.

 For example you can call setParameter to fix the value of a
parameter in the JPQL string; or call setFirstResult and
setMaxResults to execute a range query.

 A concern with using dynamic queries is the potential for JPQL
injection attacks when the query is triggered via a user interface.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

30

Normalizing Payroll

Suggested time: 30 minutes

In this lab you will create a console application that runs a simple
update algorithm over the Earthlings database. You will execute a
query for all employees whose salaries are outside of the range
prescribed by their job descriptions, and adjust to put them in
tolerance.

Detailed instructions are found at the end of the chapter.

LAB 4

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

31

Named Queries

 When you see potential for a query to be re-used, you can
encapsulate it as a named query.

 Place a @NamedQuery annotation on any entity in the
persistence unit.

@NamedQuery(name="Job.getAllJobs",
 query="select j from Job j");
@Table(name="JOBS")
public class Job

 Often you’ll annotate the entity that is the query’s result type.

 But named queries are global to the persistence unit, so actually
any entity will do – and sometimes there is no one, obvious choice.

 The name must be unique within the whole persistence unit, too,
and one convention is to include the entity class name and then a
dot to prefix the query name.

 After the prefix, a descriptive name for the query appears.

 To execute a named query, use the createNamedQuery
method on the entity manager.

List<Job> jobs = em.createNamedQuery
 ("Job.getAllJobs", Job.class).getResultList();

 Notice how similar is this usage to our previous calls to
createQuery – and, indeed, the compiler won’t catch it if you use
one of these methods in place of the other.

 At runtime, the first argument to createNamedQuery is a name,
to be found amongst the named queries for the persistence unit –
whereas on createQuery it’s the JPQL itself.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

32

Query Parameters

 A query can include replaceable parameters, of two types:

 Named parameters, stated as a colon followed by a name

 Positional parameters, stated as a number followed by a question
mark – for example 1?

 Any query can do this, but parameters are especially common
on named queries, since they are meant for re-use.

@NamedQuery(name = "Job.getAllJobsById",
 query = "select j from Job j where j.id = :id");

 In this query, we are able to select a single Job by its primary key.

 Supply parameters to such a query after creating it and before
executing it:

Job job =
 em.createNamedQuery("Job.getJobById", Job.class)
 .setParameter("id", id);
 .getSingleResult();

 In the method above, we pass the ID to the query using the
setParameter method.

 This kind of query is safer than a dynamic query because it is not
subject to a JPQL injection attack; its structure is static and the
parameters cannot alter that structure, only populate it.

 Notice that since this query can only return a single value, we
have used the getSingleResult method.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

33

Native Queries

 In addition to the query and named query, JPQL also supports a
native query, or SQL query, when needed.

 This provides a final fallback for situations where JPQL is
insufficient, in its overall expressiveness or when trying to use
proprietary database extensions.

 Native queries are very similar to their JPQL counterparts.
private static final String query =
 "select * from licenses";
List<?> jobs = entityManager
 .createNativeQuery(query, License.class)
 .getResultList();

 This method always returns the weakly-typed Query; it has had
this method signature since JPA 1.0 and so there was not the
opportunity to define a strongly-typed overload as we’ve seen with
createQuery.

 Before going too far with native queries, note that there are
often more attractive alternatives.

 Some JPA providers have extended features geared to one or more
database systems, so you might be able to work with a more
specific API instead of with native SQL.

 For example, EclipseLink programmers may want to investigate its
numerous Oracle database extensions.

 Also, we’ll see in a moment some JPA-2.1 features that make it
easier to take advantage of SQL extensions without leaving the
more portable, object-oriented JPA space.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

34

Named, Native Queries

 We may as well complete the square: yes, you can define a
@NamedNativeQuery, and instantiate it with
createNamedNativeQuery on the entity manager.

@NamedNativeQuery(name="Drug.getDrugBySoundex",
 query="select * from pharmacy.drugs "
 + "where soundex(drug_name) = soundex(?)",
 resultClass = Drug.class);
...
List<Drug> drugs = em.createNamedQuery
 ("Drug.getDrugBySoundex", Drug.class)
 .setParameter(1, "welbutren").getResultList();

 This method will return a TypedQuery based on the class that you
pass in as the second argument, as createQuery will do.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

35

Named Queries

 In Earthlings_Step7, a new client application exercises a
named query that can read the total payroll of a given
department.

 First, see src/cc/hr/entity/Department.java.
@NamedQueries
({
 @NamedQuery(name="Department.getPayrollByName",
 query="select sum(e.salary) from Department d " +
 "inner join d.employees e where d.name= :name"),
 @NamedQuery(name=
 "Department.getDepartmentNamesAndPayroll",
 query="select d.name, sum(e.salary) from " +
 "Department d inner join d.employees e " +
 "group by d.name order by d.name"),
 @NamedQuery(name=
 "Department.getDepartmentsByNameAndPayroll",
 query="select d, sum(e.salary) from " +
 "Department d inner join d.employees e " +
 "group by d order by d.name")
})
public class Department

 We use the common trick with Java annotations of grouping them
in a plural version of the primary annotation whose value is an
array of the primary, singular annotation: in this case, a single
@NamedQueries that collects @NamedQuery definitions.

 Each of the three queries has a distinct name, but all qualified by
Department as the entity type most intuitively associated with
what the queries do.

 Note that the first query, “Department.getPayrollByName”, takes a
single, named parameter.

EXAMPLE

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

36

Named Queries

 In src/cc/hr/client/TestNamedQueries.java, a helper
method getPayrollByDepartment invokes that first query,
propagating its own parameter as the query parameter:

 static Long getPayrollByDepartment
 (EntityManager em, String name)
 {
 try
 {
 return (Long) em.createNamedQuery
 ("Department.getPayrollByName")
 .setParameter("name", name)
 .getSingleResult();
 }

 The main method then calls this helper method three times, with a
different department name each time:

 emf = Persistence.createEntityManagerFactory
 ("EarthlingsPU");
 em = emf.createEntityManager();
 ProviderUtil.reportProvider(em);

 System.out.println ("Department payrolls:");
 System.out.format("%-20s %,10d%n",
 "Research",
 getPayrollByDepartment
 (em, "Research"));
 System.out.format("%-20s %,10d%n",
 "Software Development",
 getPayrollByDepartment
 (em, "Software Development"));
 System.out.format("%-20s %,10d%n",
 "Test And Integration",
 getPayrollByDepartment
 (em, "Test And Integration"));

EXAMPLE

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

37

Named Queries

 Run this class as a Java application, and see the results for each
of the three dpeartments:

Department payrolls:
Research 1,035,000
Software Development 906,000
Test And Integration 533,000

EXAMPLE

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

38

JPA
2.1Stored-Procedure Queries

 JPA 2.1 introduces a standard means of invoking stored
procedures.

 This was possible only via certain providers’ proprietary APIs
under JPA 2.0 and earlier.

 Call createStoredProcedureQuery on the entity manager,
providing the name of the stored procedure in as defined in the
target schema.

StoredProcedureQuery query =
 em.createStoredProcedureQuery ("SP");
query.setParameter (1, 4);
query.registerStoredProcedureParameter
 (2, String.class, ParameterMode.OUT);
query.execute ();
return query.getOutputParameterValue(2);

 You can set parameters, as you would for a JPQL query.

 Beware that not all JDBC drivers support named parameters for
stored procedures, so you may need to rely on positional
parameters instead, as shown above.

 Because a stored procedure doesn’t have “results” or a return type,
you don’t get an entity or list of entities back when you execute.

 Instead, call registerStoredProcedureParameter for “out
parameters”, and then you can read the provided value with
getOutputParameterValue.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

39

JPA
2.1Named, Stored-Procedure Queries

 Because there can be so much involved in even a minimal
invocation of a stored procedure, the option to encapsulate the
query as a named query is especially appealing.

 Use @NamedStoredProcedureQuery:
@NamedStoredProcedureQuery
 (name="MyEntity.SP", procedureName="SP",
 parameters=
 { @StoredProcedureParameter (name="numberIn",
 type=Integer.class, mode=ParameterMode.IN),
 @StoredProcedureParameter (name="stringOut",
 type=String.class, mode=ParameterMode.OUT) })
public class Employee

 Note that in this usage we’re not pinning our hopes on support for
the the parameter names shown above; the array of
@StoredProcedureParameter annotations implies ordinal
position for each parameter, and that will be used.

 Then create and use the query like this:
StoredProcedureQuery query =
 em.createNamedStoredProcedureQuery
 ("MyEntity.SP");
query.setParameter (1, 4);
query.execute ();
return query.getOutputParameterValue(2);

 Notice that, while you still have to provide values for input
parameters, the registration of output parameters is entirely
encapsulated in the named-query annotation, so that it doesn’t
need to be done over and over in various parts of the application.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

40

Named, Native, Stored-Procedure Queries

 Just kidding.

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

41

Normalizing Payroll, Again

 This chapter’s lab was, hopefully, a useful exercise in working
with entity managers and carrying out basic persistence
operations.

 But, as it happens, the Earthlings schema already defines a
stored procedure called normalizesalaries, and we’d do better
to take advantage of that.

 Do your work in Earthlings_Step8, where the old code has
already been ripped out in favor of a stored-procedure call.

 The completed demo in Earthlings_Step9 goes a step farther by
capturing this bit of logic as a named, stored-procedure query.

 The stored procedure is implemented, quite differently, for
Derby and Oracle versions of the schema.

 It’s already in place, having been set up as part of creating the
schema along with all the usual DDL and SQL INSERTs.

 We won’t dive into the particulars of how the procedure is defined,
but if you’re curious you can see the Derby source code under
Schema/Earthlings/Derby, in
src/cc/util/earthlings.DerbyProcedures.

 For Oracle, the PL/SQL definition is found in
Schema/Earthlings/Oracle/earthlings_appcreate_oracle.sql.

DEMO

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

42

Normalizing Payroll, Again

1. Open src/cc/hr/client/NormalizePayroll.java, and see that the main
method has much less code in it than when you left it at the end of the
lab exercise:

 em.getTransaction ().begin ();
 StoredProcedureQuery spq =
 em.createStoredProcedureQuery
 ("normalizeSalaries");
 spq.registerStoredProcedureParameter
 (1, String.class, ParameterMode.OUT);
 spq.execute ();
 System.out.println
 (spq.getOutputParameterValue (1));
 em.getTransaction ().commit ();

 The stored procedure fills the output parameter with a formatted
string that is more or less equivalent to the program output from
the previous version.

2. Run this class as a Java application, and see that it carries out the
same algorithm, such that it adjusts the salaries of five employees:

Normalizing all salaries ...

Salary for Ross Franks was 68000 –
 adjusted to 70000
Salary for John Bigboote was 95000 –
 adjusted to 90000
Salary for Penny Pretty was 24000 –
 adjusted to 25000
Salary for Devin Smythe was 64000 –
 adjusted to 60000
Salary for Audra Swanson was 72000 –
 adjusted to 65000

Done.

DEMO

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

43

Normalizing Payroll, Again

3. Open src/cc/hr/entity/Employee.java and add the following
annotation to the class, to define the named, stored-procedure query:

@NamedStoredProcedureQuery
 (name = "Employee.normalizeSalaries",
 procedureName="normalizeSalaries",
 parameters=@StoredProcedureParameter
 (type=String.class, mode=ParameterMode.OUT))
public class Employee

4. In NormalizePayroll.java, change over to use this named query:
 StoredProcedureQuery spq =
 em.createNamedStoredProcedureQuery
 ("Employee.normalizeSalaries");
 spq.registerStoredProcedureParameter
 (1, String.class, ParameterMode.OUT);
 spq.execute ();
 System.out.println
 (spq.getOutputParameterValue (1));

 We no longer need to call registerStoredProcedureParameter,
as this is now part of the named-query definition.

5. In order to see results, you will need to run recreatedb from the
Schema/Earthlings/(Derby or Oracle) directory.

6. Then, run the application again, and see that it performs in the same
way.

DEMO

© 2010-2016 Edward Rayl, Tia Gustaff Rayl, and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

44

SUMMARY

 In this chapter, we looked at CRUD operations on our
completed entities.

 We haven't exhausted the possibilities of enhancing our entities with
additional annotations.

 Later we will discuss validation and cascade annotations.

 We started out examining the EntityManager interface and
the operations we can perform on that interface.

 We moved to EntityTransaction next, and found that we
cannot forget our underlying database when performing a
unit of work.

 Entity state is very important to understand because
transactional operations are limited to managed entities.

 There are a number of conditions that will cause an entity to become
detached, or unmanaged.

 We will examine entity state in more detail in a later chapter.

 CRUD operations take a lot of care, to get them to work the
way you expect.

 This is an area where prior SQL programming experience can be
helpful.

 We will go on to learn JPQL in depth in the next chapter.

 This will allow us to perform sophisticated queries on our entities,
either for CRUD operations, reporting, or interactive web
applications.

