
CHAPTER 15

ASYNCHRONOUS TASKS

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

2

OBJECTIVES

After completing “Asynchronous Tasks,” you will be able to:

 Describe the process and threading model of Android
applications.

 Use Looper and Handler classes to post messages to threads,
including the main application thread for updates to the UI.

 Use the AsyncTask class to perform longer-running tasks on
separate threads while still interacting with the UI at certain
points in the task lifecycle.

 Manage progress dialogs during task execution, and allow
the user to cancel the task by canceling the dialog.

 Implement error handling over asynchronous tasks.

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

3

Multi-Threading in Android

 Android implements the familiar Java SE model of threads
and thread groups, but the structure of groups and threads it
sets up is unique to the Android OS, as are some rules it puts in
place:

 An application occupies a process on the OS.

 The process starts a main thread for the application.

 This thread is responsible for all user-interface actions –
including responding to user gestures.

 There is a message loop processed by this thread, on which all
user actions are encountered, and other events such as invalidating
a view are placed here as well.

 Applications may create their own worker threads – but there are
important restrictions on what they can do.

 Specifically, only the thread that creates a View can operate on that
View. That means that spawned threads cannot update the UI!

Event Handler

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

4

Looper and Handler

 The key types to understanding Android’s processing model are
Looper and Handler, found in the android.os package.

Thread

Handler

post()
postDelayed() MessageQueue

Looper

prepare()
loop()
getMainLooper()
myLooper()
quit()

Runnable
<<Interface>>

Message

 A Looper implements a message-handling loop for a thread.

 Any thread can have a looper – call prepare to create a looper for
the current thread of execution, and loop to start processing.

 The main thread has one, generally known as the main looper,
and you can get this by calling the static method getMainLooper.

 A Handler attaches to a Looper and provides a simple means
of putting messages on the looper’s message queue.

 Use post, postDelayed, or one of a few other variants that give
various options for the timing of message enqueueing.

 This makes Handler the easiest way for one thread to assign a
tasks to another – the recipe is basically this:

Handler handler =
 new Handler (Looper.getMainLooper ());
handler.post (myRunnable);

 The Runnable will be placed on the queue of the main thread, and
executed at some future time.

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

5

Background Tasks

 Let’s say you want to carry out a longer-running task in
response to some user gesture, such as a button click.

 You could implement a Runnable and start a Thread to call
your run method – and as long as the activity in question never
needs to touch the user interface, that will work fine.

 If you need to report your results or progress to the user,
though, you will find that any attempt to operate on the user
interface will result in an exception.

 So you will instead need to signal the main thread that it should
carry out some UI updates – but how to do this?

 This is where a Handler is quite useful.

 When your worker thread is done processing, it can post a
Runnable to the main looper.

 The code is executed on the main thread and so is free to update
the UI.

Event Handler

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

6

The AsyncTask Class

 This is a reasonably simple structure, but it makes for a lot of
repetitive and error-prone coding.

 Android also provides a very nice encapsulation of this
common usage, in the AsyncTask class.

 Public methods let a caller manage task execution:
public void execute (Params...);
public void cancel (boolean);

 At first glance the protected methods of this class just seem to
break down some complex task into phases:

* protected void onPreExecute ();
 protected Result doInBackground (Params...);
* protected void onPostExecute (Result);
* protected void onProgressUpdate (Progress...);
 protected void publishProgress (Progress...);
* protected onCancelled ();
* protected onCancelled (Result);

 The genius of this class is that it assures that certain methods will
be called on the UI thread, while some will be called on a separate
worker thread.

 Those marked * above are called on the UI thread.

 The class code does all the heavy lifting in the background, such
as scheduling execution and posting messages to the UI thread
to assure that the right code is called on the right thread at the
right time.

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

7

The AsyncTask Class

 So if you were to implement a longer-running task in this way,
and launch it from the UI thread, your methods would be called
in sequence, but on different threads as appropriate:

public class MyTask
 extends AsyncTask<Void,Void,Void>
{
 protected void onPreExecute ()
 {
 ...
 }

 protected Void doInBackground
 (Void... params)
 {
 ...
 }

 protected void onPostExecute
 (Void result)
 {
 ...
 }
}

 Similar coordination occurs over other protected methods:

 You can cancel from any thread, but onCancelled will be called
on the UI thread.

 You can publishProgress from doInBackground – so, on the
worker thread – but onProgressUpdate will be called on the UI
thread, for example to refresh progress bars or other indicators.

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

8

The AsyncTask Class

 One of the trickier aspects to using AsyncTask is that it is
parameterized – three times!

public class AsyncTask<Params,Progress,Result>

 Params defines the type of parameters that can be passed into
the task.

 Pass any number of arguments of this type to execute.

 Your arguments will be passed along to doInBackground.

 Progress defines the type of information that can be posted
from the background task as an indication of progress.

 Code in doInBackground will pass arguments of this type in any
calls it makes to publishProgress.

 These will be handed over to the onProgressUpdate method.

 Result defines a result type for the task.

 This will be returned by doInBackground.

 It will be passed to onPostExecute.

 AsyncTasks can not be reused – execute and throw it away.

 A final note about this class – it is intended for tasks that are
not very long in duration.

 Long enough, perhaps, for it to be worth showing the user some
progress indication.

 But for tasks taking “more than a few seconds,” to quote the API
documentation, should be handled by Java SE concurrent types
such as ExecutorService – or implemented in Android services.

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

9

A Running Clock

 We’ll look at a simple example of multi-threading in the Quiz
application: we will put a running clock on the screen so the
user can see elapsed time.

 The starter code has traditional Java Timer and TimerTask code to
update the clock every quarter-second.

 We will see that this doesn’t mesh well with Android UIs, and
refactor it to use AsyncTask.

 Do your work in Demos/Async.

 The completed demo is found in Examples/Quiz/Step5.

 See src/cc/quiz/QuestionActivity.java.

 There is a field to keep track of the running timer:
 private Timer timer;

DEMO

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

10

A Running Clock

 We hook resume/pause lifecycle events to start/stop the timer. We
create the timer task with reference to a text view, which it should
update with the formatted elapsed time, and a starting time from
which to calculate:

 @Override
 public void onResume ()
 {
 super.onResume ();

 timer = new Timer ();
 timer.schedule (new Stopwatch
 ((TextView) findViewById (R.id.clock),
 ((Quiz) getApplication ()).getStartTime ()),
 250, 250);
 }

 @Override
 public void onPause ()
 {
 super.onPause ();
 timer.cancel ();
 }

DEMO

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

11

A Running Clock

 Our timer task does the calculation, and for the moment just logs
that it’s being called:

 private class Stopwatch
 extends TimerTask
 {
 private TextView target;
 private long startTime;

 public Stopwatch
 (TextView target, long startTime)
 {
 this.target = target;
 this.startTime = startTime;
 }

 public void run ()
 {
 long testTime =
 SystemClock.elapsedRealtime () - startTime;
 int minutes = (int) (testTime / 60000);
 int seconds = (int)
 (testTime % 60000) / 1000;

 String formatted = String.format
 ("%d:%02d", minutes, seconds);
 Log.i ("Quiz", formatted);
 //TODO target.setText (formatted);
 }
 }

DEMO

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

12

A Running Clock

1. Test the starter application. When you click Start and get to the first
question, you will start to see those log messages in the LogCat view.

Quiz 0:01
Quiz 0:01
Quiz 0:01
Quiz 0:01
Quiz 0:02
Quiz 0:02
Quiz 0:02
Quiz 0:02
Quiz 0:03
...

DEMO

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

13

A Running Clock

2. Try un-commenting the final line of the run method, so that it will
show the elapsed time:

 String formatted = String.format
 ("%d:%02d", minutes, seconds);
 Log.i ("Quiz", formatted);
 target.setText (formatted);
 }
 }

3. Test again ... whoops!

E/AndroidRuntime(5702): android.view.ViewRootImpl
 $CalledFromWrongThreadException: Only the
 original thread that created a view hierarchy can
 touch its views.

DEMO

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

14

A Running Clock

4. Change the base class of Stopwatch from TimerTask to AsyncTask,
with Void for all the type arguments:

 private class Stopwatch
 extends AsyncTask<Void,Void,Void>

5. Now you will have to do your own timing. Implement the method

doInBackground to sleep for a quarter-second at a time, as long as it
has not been canceled:

 @Override
 protected Void doInBackground (Void... params)
 {
 while (!isCancelled ())
 try
 {
 Thread.sleep (250);
 }
 catch (InterruptedException ex) {}

 return null;
 }

6. Now, you could call your run method from inside this loop – but you

would not have gained anything, because doInBackground runs on a
non-UI thread and you would still be prohibited from adjusting the
UI state from this thread. Instead, change the signature of the method
to be an override of onProgressUpdate:

 public void run ()
 @Override
 protected void onProgressUpdate (Void... values)

DEMO

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

15

A Running Clock

7. Now, call publishProgress from the doInBackground method:
 while (!isCancelled ())
 try
 {
 publishProgress (params);
 Thread.sleep (250);
 }

8. Now, instead of a Timer, keep a field of type Stopwatch itself:
 private Stopwatch stopwatch;

9. In onResume, the creation of the Stopwatch instance is unchanged.

But now, you capture a reference to it, directly, and execute it:
 @Override
 public void onResume ()
 {
 super.onResume ();

 stopwatch = new Stopwatch
 ((TextView) findViewById (R.id.clock),
 ((Quiz) getApplication ()).getStartTime ());
 stopwatch.execute ();
 }

10. Cancel the task, not the timer, in onPause:
 @Override
 public void onPause ()
 {
 super.onPause ();
 stopwatch.cancel (true);
 }

DEMO

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

16

A Running Clock

11. Run the application and see that the call to target.setText is now
safe, because the necessary thread synchronization is handled for you
by AsyncTask and this call is being made on the UI thread.

 And now, you should have no trouble answering the new, final
question of the quiz ...

DEMO

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

17

Using the ProgressDialog

 That’s great, but what really have we gained?

 Possibly some better performance from multi-threading.

 Possibly some better responsiveness as the user thread is able to go
back to processing user gestures a bit sooner.

 But the big point of asynchronous tasks is combining those
advantages with the ability to do UI updates ...

 Before the task starts – that’s onPreExecute

 During the task – that’s onProgressUpdate

 After the task completes – that’s onPostExecute

 So a common strategy is to use all three of these methods to
show the user the progress of the task in real time:

 Show a ProgressDialog at the start. This might just show a
“working” animation, but it could also show a more meaningful
progress bar to tell the user how far along we’ve gotten.

 Update the progress bar as the task publishes progress updates.

 Close the dialog when the task is complete.

 Make the dialog cancelable, and if canceled take this as a signal to
cancel the task itself.

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

18

Downloading Scribbles

 In Examples/Scribble/Step9, the tasks related to cloud
storage have been refactored to use threading via AsyncTask.

 See src/cc/draw/android/ScribbleActivity.java.

 In the LoadCloud menu handler, onOptionsItemSelected starts
an activity to offer the user a directory of downloadable drawings
from the Lockbox storage service.

 Then, the onActivityResult method takes the selected name and
kicks off a request to the web service and, when done, updates the
window title and invalidates the content view.

 It did this before, too – but now it happens by way of an
asynchronous task, LoadCloudTask:

 public void onActivityResult (int requestCode,
 int resultCode, Intent intent)
 {
 ... // defensive code / error handling

 name = extras.getString
 (CloudBrowser.EXTRA_SELECTED_URL);
 new LoadCloudTask ().execute
 (view.getModel ());
 }
 }

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

19

Downloading Scribbles

 The task class accepts a drawing as an input, and provides a
boolean result:

 private class LoadCloudTask
 extends AsyncTask<List<Element>,Void,Boolean>
 implements OnCancelListener
 {

 It also implements OnCancelListener, so that it can respond to
the user should the user choose to cancel the task in-progress.

 It shows a progress dialog before starting its work:
 ProgressDialog dialog;

 @Override
 protected void onPreExecute ()
 {
 dialog = new ProgressDialog
 (ScribbleActivity.this);
 dialog.setMessage (getResources ()
 .getText (R.string.cloud_load_description));
 dialog.setCancelable (true);
 dialog.setOnCancelListener (this);
 dialog.show ();
 }

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

20

Downloading Scribbles

 doInBackground does little more than delegate to loadURL as
we’ve seen it in earlier versions of the application:

 @Override
 protected Boolean doInBackground
 (List<Element>... params)
 {
 List<Element> model = params[0];

 String requestURL =
 getServiceURL () + "/" + name;
 Log.i ("Storage", requestURL);

 return loadURL (requestURL, model);
 }

 onPostExecute cleans up the dialog, and does other post-
processing that was done in onActivityResult before:

 @Override
 protected void onPostExecute (Boolean success)
 {
 dialog.dismiss ();
 if (success)
 {
 setTitle (getResources ().getText
 (R.string.app_name) + ": " + name);
 view.invalidate ();
 }
 else ...
 }

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

21

Downloading Scribbles

 Finally, we catch cancellation events from the progress dialog, so
that we can cancel the running task if the user cancels the dialog:

 public void onCancel (DialogInterface dialog)
 {
 cancel (true);
 }
 }

 Test, and see the progress dialog for a few seconds before the
download of available drawings, and then again during the
drawing download itself:

 The application is multi-threaded in two more places:

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

22

 For the SaveCloud handler, which now uses a SaveCloudTask

 In the CloudBrowser, so that the act of getting the list of available
drawings from the service is also threaded and cancelable

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

23

Error Handling

 Special care must be taken to handle errors thrown during
execution of an asynchronous task.

 Exceptions will naturally fall through different method call
stacks on different threads; and some of those involve your
calling code, but some do not.

 By default, exceptions encountered in various methods will
behave as follows:

 An exception in onPreExecute occurs on the UI thread and will
fall through to the caller of execute on the task.

 An exception in doInBackground occurs on the background
thread and will fall through that thread’s call stack – which does
not include any application methods outside of the task class.

 An exception in onPostExecute occurs on the UI thread but by
way of a queued message, and so will not fall through to your
calling code.

 So it is important generally to assure that an asynchronous task
does its own error handling.

 And of course any handling that involves the UI must occur on
the UI thread! so some signaling between doInBackground
and onPostExecute is often indicated.

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

24

ProgressTask and CautiousTask

 In Examples/Insurance/Step16, there are two
encapsulations of asynchronous tasks with specific feature sets:

AsyncTask<P,Pr,R>

CautiousTask<P,Pr,R>
errorMessageID
logTag
failure

showMessage()

AlertDialog

ProgressTask<P,R>
messageID

ProgressDialog

OnCancelListener
<<Interface>>

 CautiousTask overrides doInBackground to call its own
helper method, and checks for failures:

 Then it overrides onPostExecute either to delegate to another
helper method for normal post-processing, or to show an error
dialog and delegate to a different helper for error handling.

 ProgressTask refines this by showing a progress dialog from
onPreExecute to onPostExecute.

onPostExecute doInBackground

backgroundTask errorHandler

Error dialog

1

postProcessor

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

25

ProgressTask and CautiousTask

 See src/cc/android/CautiousTask.java.
public abstract class
 CautiousTask<Params,Progress,Result>
 extends AsyncTask<Params,Progress,Result>
 implements OnDismissListener

 It defines three helper methods: one to be called by
doInBackground, and two to be called by onPostExecute:

protected abstract Result
 backgroundTask (Params... params);
protected void postProcessor (Result result) {}
protected void errorHandler (Throwable failure) {}

 It requires error-message and logging information through its
constructor signature:

 public CautiousTask (Activity parent,
 int errorMessageID, String logTag)
 {
 this.parent = parent;
 this.errorMessageID = errorMessageID;
 this.logTag = logTag;
 }

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

26

ProgressTask and CautiousTask

 It overrides doInBackground in order to catch any exceptions. It
logs the caught exception, and stores it as the failure field:

 @Override
 protected Result doInBackground
 (Params... params)
 {
 try
 {
 return backgroundTask (params);
 }
 catch (Throwable e)
 {
 Log.e (logTag, "An error occurred ...", e);
 failure = e;
 }

 return null;
 }

 It then overrides onPostExecute to invoke postProcessor or to
show an error message to the user, depending on the success of the
operation:

 @Override
 public void onPostExecute (Result result)
 {
 if (wasSuccessful ())
 postProcessor (result);
 else
 showMessage ();
 }

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

27

ProgressTask and CautiousTask

 showMessage just shows the appropriate AlertDialog.
 protected void showMessage
 (int messageID, boolean thenCallErrorHandler)
 {
 AlertDialog dialog =
 new AlertDialog (parent, messageID);

 if (thenCallErrorHandler)
 dialog.setOnDismissListener (this);

 dialog.show ();
 }

 But we register a dialog-dismiss listener, so that after the user has
seen the error message, the errorHandler helper method will be
invoked to allow additional handling.

 public void onDismiss (DialogInterface dialog)
 {
 errorHandler (failure);
 }

 So a subclass can work from here:

 It must implement backgroundTask, as it would normally have
implemented doInBackground.

 It can then implement normal post-processing in postProcessor,
and additional error handling in errorHandler.

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

28

ProgressTask and CautiousTask

 See src/cc/android/ProgressTask.java; the contributions of
this class are simpler and mostly include techniques we’ve
already seen.

public abstract class ProgressTask<Params,Result>
 extends CautiousTask<Params,Void,Result>
 implements OnCancelListener

 For starters, notice that we squeeze out the Progress type
parameter. Since this class only shows an activity animation in its
progress dialog, there is nothing useful we could say with a call to
publishProgress. So we simplify here.

 It captures an additional messageID in its constructor, for use in
the progress dialog.

 It overrides onPreExecute to show the progress dialog:
 @Override
 protected void onPreExecute ()
 {
 dialog = new ProgressDialog
 (parent, messageID);
 dialog.setCancelable (true);
 dialog.setOnCancelListener (this);
 dialog.show ();
 }

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

29

ProgressTask and CautiousTask

 It overrides onPostExecute to dismiss the progress dialog, and
then calls the base class implementation – which is the code in
CautiousTask that forks between normal processing and error
handling.

 @Override
 public void onPostExecute (Result results)
 {
 dialog.dismiss ();
 super.onPostExecute (results);
 }

 Finally it implements the cancellation listener, to cancel the task if
the user requests it – just as we did in the Scribble demonstration
earlier:

 public void onCancel (DialogInterface dialog)
 {
 cancel (true);
 }

 You will use both of these classes in the upcoming lab as you
address threading concerns for the Insurance application and
its network interactions.

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

30

Threading in the Insurance Application

Suggested time: 30-45 minutes

In this lab you will wrap existing upload and download operations
in asynchronous tasks, taking advantage of the additional
encapsulations already in the code.

Detailed instructions are found at the end of the chapter.

LAB 15

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

31

Local Backup and Synchronization

 In Examples/Insurance/Step18, we have followed the
direction of this chapter’s labs and taken similar steps to realize
a robust, connected version of the application.

 This is the answer code to an additional lab from the full
intermediate course, and it has these additional features:

 It implements inner-class AsyncTasks for all of its download and
upload operations: creating, modifying, and completing
adjustment records; reporting missed appointments and
requesting rescheduled appointments.

 It saves a local backup of its most recent schedule download, in
internal storage, and falls back to this local copy if started when the
network is not available:

 It synchronizes any changes made to the local copy if started
when the network is available – and prior to doing a fresh
download of the schedule.

 Full coverage is beyond our scope, but you may want to look at
the code for this step to see the strategies; just about everything
mentioned above is implemented in the Application class.

Web
Service

Android
Application

A good day

A bad day

A better day later

EXAMPLE

© 2012-2013 Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

32

SUMMARY

 Android threading is not fundamentally all that different
from Java threading.

 The most obvious difference is the requirement that a single
thread be responsible for all user interactions and all contact
with the view hierarchies of activities.

 This in turn requires inter-thread communication.

 Then Android facilitates that communication with message
queues for threads, and the Looper and Handler classes.

 It further simplifies the programming model for common
cases with the AsyncTask class.

 onPreExecute and onPostExecute methods run on the thread that
executes the task (usually the main thread).

 doInBackground carries out the task on a separate thread.

 Progress updates are facilitated so that they can be shown to the user
with code that runs on the main thread as well.

 Error handling in an asynchronous task is especially delicate
and important, because it is hard or impossible to manage
this from the code that executes the task.

