

Comparing Ajax Strategies

for Java Applications

Will Provost

Version 1.0

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

2

Comparing Ajax Strategies for Java Applications
Version 1.0

Information in this document is subject to change without notice. Companies, names
and data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of the author.

A publication of Capstone Courseware, LLC.
877-227-2477
www.capstonecourseware.com

© 2008 Will Provost. All rights reserved.
Published in the United States.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

3

Genesis of this Document

• As part of the development of lab software for a training course
on developing Ajax applications in Java1, the author built a
case-study application in several variant forms.

• For purposes of the course, this application helped to highlight
differences in programming technique.

• It has also provided the basis for side-by-side comparisons
between a few Ajax/Java frameworks.

• This document summarizes that analysis.

1 Capstone Course 202, “Ajax in Java Applications:” http://capcourse.com/202.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

4

Goals

• This is not intended as a product comparison – or, not quite.

• We’re focusing more on the different strategies taken by
various framework products – and there are many examples of
each strategy:

− Plain-vanilla XHR implementations (including the use of
JavaScript-only toolkits such as Prototype and Dojo), in which
client-side scripts exercise direct control over request and response
content

− RMI frameworks (represented by DWR and jabsorb)

− JSF component libraries (examples being RichFaces and Trinidad)

• For each, we’re looking for some hard numbers ...

− Amount of code involved in the implementation

− Request and response sizes that result

• ... and also some insights into less quantifiable pros and cons ...

− Elegance of the architecture: how clean/intuitive is the
programming model, and how complete is the set of features?

− Impact on development and testing time

− Availability and quality of documentation

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

5

Methodology

• First, the author implemented a simple web application, using
servlets, JSP, and the XHR browser object for Ajax features.

− As much as possible, the Ajax request/response code was isolated,
on both server and client sides.

• Then the application was refactored to use progressively more
ambitious Ajax frameworks:

− Prototype2

− DWR and jabsorb

− RichFaces and Trinidad

• When each variant was running well and seemed to have
stabilized as a body of code, we started counting things.

• See the later pages on metrics for more on the exact
methodology by which we’re trying to quantify certain pros and
cons of each implementation strategy.

• Generally, we’re taking snapshots – of code, of runtime traffic –
and looking to categorize with an eye toward scalability, even
though our basis is a small application and a quick user session:

− The parts that are “overhead” or otherwise exist only once per
application or user session

− Parts that will repeat – with more features that must be coded or
more requests that must be handled at runtime

2 The Prototype implementation isn’t captured in the accompanying lab code, nor was it measured closely
as the others were. A quick look made it clear that the differences from the XHR implementation, in terms
of code size and request/response size, were very minor compared to the shifts we see with the other
frameworks listed here.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

6

Installing and Testing the Code

• To see the source code, and to test it out, do the following:
1. Download the lab archive from the following URL:
http://capcourse.com/Library/AjaxMetrics/Install.zip

2. Open the ZIP archive and run the installer found there – this is the

only file in the archive, Install_AjaxMetrics_10.exe, and it is a
WinZip self-extractor.

3. Click Unzip to put the files in a tree c:\Capstone\AjaxMetrics. Paths
mentioned the rest of the way through this document will be relative
to this root.

4. Close the installer when done.

• You’ll see five implementations of the case-study application,
each in a subdirectory of Examples/Flights.

• There are other directories as well, and these will be explained
later in the document.

• There are also many supporting tools (such as DWR, jabsorb,
etc.) set up in directories under c:\Capstone\Tools.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

7

Installing and Testing the Code

• If you’d prefer to install the lab code on a non-Windows
machine, download the following ZIP archive instead:

http://capcourse.com/Library/AjaxMetrics/Code.zip

• Then, just unzip this file to any empty directory.

− The main difference is that Javadoc won’t be generated from the
source files, as it is when using the installer.

− Paths mentioned in this document will then be relative to a new
directory AjaxMetrics under your chosen root directory.

− Tools will appear in Tools under your root directory.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

8

Tools and Environment

• To build and test the installed code, set your environment as
follows:

− The examples require a Java 6 developer’s kit. Set your
JAVA_HOME variable accordingly.

− Include both your Java-6 bin directory and the directory
c:\Capstone\Tools\Ant1.6\bin in your executable path.

− Set an environment variable CC_MODULE to
c:\Capstone\AjaxMetrics.

• From c:\Capstone\Tools\Tomcat6.0\bin, run startup to
start the Tomcat web server.

− Leave it running now, but type shutdown from this directory
when you’re ready to shut down the server.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

9

The “Raw” XHR Implementation

• We don’t have the usual full write-up of the example code as we
do in the full courseware.

• Neither do we try to explain the inner workings of each variant.

• But we’ll visit three variants, each of which is typical of one of
the major strategies we’re considering: “raw” XHR, RMI, and
JSF.

• Let’s start with the most basic variant, which is found in
Examples/Flights/XHR.

• Two different pages make Ajax requests.

• docroot/airports.jsp allows the user to search for airport
codes by location, with an HTTP GET at a URL of the following
form:

/AirportSearch?address=location-string

− The expected response provides the airport code in plain text.

• A traditional page request causes the application to move from
the first page to the second, after running a query for available
flights between two airports.

• docroot/flights.jsp sends pricing queries, supplying
outbound and inbound flight numbers in a URL like this:

/Pricing?outbound=code&inbound=code

− The expected response is again plain text, this time providing a
string representation of the round-trip fare, in dollars.

EXAMPLE

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

10

The “Raw” XHR Implementation

• We’ll run through a build-deploy-test process now.

− All five examples packaged with this document can be built,
deployed, and tested in this same way.

− Note that deploying one will “hide” the other, as they’re all
configured to use the same request URLs.

• Build and deploy this application using Ant:
ant

• Test in your browser, at the following URL:
http://localhost:8080/Flights

− Let’s say we know our own airport code, but not the code of the
place we want to visit. Enter “BOS” in the “Flying from:” field, and
then “Baltimore” in the “airports near:” field on the lower right of
the table, as shown above.

EXAMPLE

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

11

The “Raw” XHR Implementation

− Click Search. The Ajax request is sent and handled by
AirportSearchServlet, and the response gives the correct code,
which is then plugged into the form field:

− Now click Find Flights. This is a traditional page request, and we
get a pair of tables showing flights in each direction:

− The paragraph at the bottom of the page is a placeholder for price
information. Try selecting two flights, and see that a second Ajax
request results in a price showing in this paragraph.

− Use the up and down arrows on the keyboard to quickly scan
prices while varying your choice of either outbound or inbound
flight. Each new selection triggers another Ajax request/response.

EXAMPLE

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

12

The “Raw” XHR Implementation

• The JSPs use plain-vanilla XHR code to send the Ajax requests.

− Requests are HTTP GETs with request parameters.

− Responses are plain-text answers such as “BWI” and “298”.

• On the server side, the application handles all requests with
dedicated servlets:

error
FlightSearchServlet

PricingServlet flights.jsp

airports.jsp

AirportSearchServlet

code
location

flight #s

price

EXAMPLE

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

13

The DWR Implementation

• In the DWR variant, we expose certain domain objects for more
or less direct invocation by client-side scripts:

− These objects exist in the XHR implementation as well; they just
aren’t shown on the previous diagram.

− Now we can peel away most of the Ajax servlet layer and let DWR
make our connections for us.

− In one case, we can let DWR do all the piping to and fro – and
simplify the client-side coding considerably in the bargain.

− We still have an intermediary to the Pricing logic, as a
performance optimization.

• The jabsorb implementation is almost identical from a design
standpoint.

error
FlightSearchServlet

flights.jsp

airports.jsp

location

flight #s

price

AirportSearch

Pricing

FlightSearch

code

PricingService

DWR magic here

EXAMPLE

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

14

The RichFaces Implementation

• The two JSF implementations are dramatically different from
the rest; we’ll consider the RichFaces variant specifically here.

− The Trinidad implementation is largely identical, but uses
different custom components and event handlers.

• Now, a reservation backing bean holds all the necessary state
– and it may seem odd at first, because it holds both persistent
information and session/conversational state, side-by-side.

− The AirportSearch and FlightSearch utilities are its gateways to
the full travel-agency database.

− Over the session, it accumulates user inputs and relevant data, as
illustrated on the following page.

EXAMPLE

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

15

The RichFaces Implementation

• The main use case for the application now occurs as a series of
interactions between JSF views and that backing bean:

1. If the user needs to search for an airport, the Ajax request sets the
originLocation or
destinationLocation
property, and then
calls findAirport.

2. Once airport codes
are entered, the full
page request sets
origin and
destination
properties, and calls
findFlights.

3. This results in
population of the
outboundFlights
and inboundFlights
properties, which are
read by the second
page.

4. Each time the user
sets outboundFlight
and inboundFlight
values, the page calls getPrice and shows the result.

EXAMPLE

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

16

The HTTP Sniffer

• For those interested in tracing the runtime behavior of any of
the examples, we’ve provided a tool in
Examples/HTTPSniffer.

• Build and start the sniffer (in a separate console from your
build process, since this process will hang and listen for
requests):

build
sniff
Forwarding local port 8079 to local port 8080 ...

• Then, test any deployed application at its usual URL, but with a
port number of 8079 rather than 8080 – such as:

http://localhost:8079/Flights

• You’ll see request and response content logged to your console
(and also to a file Traffic.txt which is created fresh each time
your run the sniffer) en route to the actual server at port 8080.

• The actual logs of HTTP traffic for each of the five strategies
can be found in Examples/Traffic.

− These are XHR.txt, DWR.txt, etc.

EXAMPLE

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

17

Benchmarks: Code Efficiency

• So – on to the results!

• First we’ll look at how much code had to be written for each of
the major strategies, to get the same basic application and
features.

• In theory, the more sophisticated frameworks will offer a
benefit in the form of reduced coding effort.

− There may be an investment of additional coding to set up the
framework for an application: configuration files, extra JARs in the
build path, imports and includes in pages and source files.

− But then there should be a reward for developers, in that they have
to write less code per page or per class.

• On the following page is a chart of the total code sizes of our
various implementations.

• For each, we’ve analyzed the code base and found four
categories of functionality:

− Non-Ajax code – everything from the deployment descriptor and
basic HTML layouts to the servlets and filters that make the basic
application function.

− Ajax code that must be written once per application – for
instance the configuration of the DWR or jabsorb servlets

− Ajax code that must be written once per business function – and
here we lump individual pages and individual server-side objects
together, saying for example that certain code is unique to the
process of looking up an airport code or pricing an itinerary, and
other code necessary to the pricing function

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

18

Benchmarks: Code Efficiency

• Those categories are each measured in bytes of code written,
and stacked in the following bar chart:

0

5000

10000

15000

20000

25000

Raw XHR
DWR

jasborb

RichFaces
Trinidad

Pricing

Airport

Once

Non-Ajax

• At first, this seems to suggest that “the simpler, the better” – as
JSF frameworks just bloat the code base, and RMI frameworks
offer only limited benefits.

• This is why we’ve broken out per-function coding!

• Consider the same chart with the added extrapolation of 20 or
so additional business functions of similar complexity:

0

10000

20000

30000

40000

50000

60000

70000

Raw XHR
DWR

jasborb

RichFaces
Trinidad

20 more functions
Pricing
Airport
Once
Non-Ajax

− The investment of framework configurations starts to pay off for
more complex applications.

− Now JSF seems to fulfill its promise, at least for those applications.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

19

Benchmarks: Code Efficiency

• Following are a few notes on the findings on the previous page.

• Only code for presentation-tier components was counted.

− The domain classes in cc.travel were left out.

− So were the JAXB persistence classes in cc.flightdb.

• We didn’t review concrete examples of Prototype or Dojo in
this course, but these were considered as well.

− They were slightly more code-efficient on the client side – and,
naturally, identical on the server-side.

• Some of the category choices are subjective.

− Does the configuration of Trinidad’s view handler count as Ajax
code? Or is it part of the framework of a non-Ajax application?

− RMI frameworks seem to get charged for Ajax-dedicated code
where JSF frameworks get a pass, because (for example) DWR is
only about Ajax, while RichFaces is about general facility in
building JSF/web applications.

• We extrapolated the per-function code size based on the
simpler airport-code lookup, rather than the pricing query.

− The latter involves some atypical client-side logic.

− For example, if we extrapolated from the <a4j:jsFunction> and
<script> elements needed in the RichFaces implementation, the
per-function cost jumps 3122%.

− This is no knock on RichFaces; the Trinidad implementation
sidesteps this logic – and winds up sending a number of
unnecessary Ajax requests as a result.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

20

Metrics: Runtime Efficiency

• The next question we’ll consider is: what does the use of Ajax
do to an application’s consumption of network bandwidth?

− And, how is this impact affected by the choice of Ajax technology?

• We logged the HTTP traffic between browser and server (using
HTTPSniffer) for a simple scenario:

1. Visit the Flights application (page request).

2. Look up an airport code by location (Ajax request).

3. Enter the other airport code directly.

4. Search for flights between those two airports (page request).

5. Select flights and see the price (Ajax request).

6. Change one flight choice and see an updated price (Ajax request).

• The average sum of request size and response size, in bytes, is
then derived for

− Resources that are only requested once per user session

− Individual page requests

− Individual Ajax requests

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

21

Metrics: Runtime Efficiency

• Here are the results for our five target Ajax technologies:

0

50000

100000

150000

200000

250000

300000

350000

400000

Raw XHR
DWR

jasborb

RichFaces
Trinidad

Per Ajax request

Per page request

Once

• Two observations:

− There is a general trend toward request and response bloat as the
technology gets more sophisticated; i.e. easier development might
mean less efficient runtime interactions.

− DWR and Trinidad lay it on pretty thick – bandwidth usage is out
of proportion to the functionality they’re delivering.

• Here’s an extrapolation of bandwidth usage assuming 100 total
page and Ajax requests per user session:

0

200000

400000

600000

800000

1000000

1200000

Raw XHR
DWR

jasborb

RichFaces
Trinidad

100 requests
Per Ajax request
Per page request
Once

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

22

Metrics: Runtime Efficiency

• Following are a few notes on these findings.

• DWR discourages caching of its primary script file, engine.js.

− Perhaps they have their reasons, but this seems a poor choice.

− The file is 44 kilobytes in size.

− Practically, this means an extra 44k download on each page
request – instead of an HTTP 304 “not modified” message.

− The generated interface script files aren’t cacheable either, but the
bandwidth hit is minimal.

− We’ve assumed a fix for this in our metrics; otherwise the per-
request cost would be, literally, off the charts.

• Trinidad has a similar problem with its main script file, which
would incur a 185k hit per page request.

− Again, we’ve assumed a fix and charged this large round-trip to the
session, rather than as a per-request cost.

• So both frameworks look wildly inefficient for a single use case,
but come a little more into line when we extrapolate to more
user interactions per session.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

23

Intangibles: Completeness and Correctness

• All the benchmarks we’ve seen seem to argue for the use of
some framework for Ajax development.

− To a lesser extent, they show that JSF holds a lot of promise for
larger enterprises, as it seems to scale up nicely over more
functionality and more requests.

• Harder to quantify are various questions of framework quality,
architecture, and ease of development.

• Between RMI and JSF strategies, there’s a familiar tradeoff
between simplicity and sophistication.

− RichFaces and Trinidad require a commitment to JSF in order to
take advantage of their UI and Ajax features, and JSF involves
certain overheads such as configuration files, tag libraries, etc.

− DWR and jabsorb are relatively simple to plug in to an existing
servlet/JSP architecture – but they leave more request-by-
request programming to the developer.

− They also suffer the significant limitation that they only publish
objects for remote invocation via Ajax requests; page requests can’t
use the same channel or serializable data formats.

• Error handling is a major concern for Ajax developers, since the
usual browser presentation of HTTP errors isn’t in play.

− Generally, JSF is in a better position here, too, as our earlier
exercises showed: a component-oriented error-reporting
framework is built in and ready to use.

© 2008 Will Provost.
All rights reserved by Capstone Courseware, LLC.

24

Intangibles: Ease of Development

• It’s also worth considering how productive one might be when
working with a given tool.

• JSF can be rather awkward in this regard.

• Applications are bigger, take a little longer to deploy, and often
a lot longer to install once the server has them.

− You noticed the slower build/test cycles during labs: RichFaces
and Trinidad both do a good bit of setting up before they’re really
ready to handle requests.

• JSF applications are highly stateful, because each view encodes
unique identifiers on the client side that must be resolved on
successive requests.

− Incremental testing is therefore harder.

− Instead of just reloading the fourth page of a five-page process, we
usually have to roll back to page one, reload, and run the
scenario forward again, just to test a change to page four.

• Unfortunately, one can’t assume much about the quality of
developer documentation when choosing an Ajax framework.

− Ultimately, Ajax isn’t a standard; and implementors tend to decide
for themselves how much documentation is enough.

− All of the frameworks we’ve used have some basic documentation,
and some have developer’s guides, and so forth.

− But this is still an emerging area of technology, and so
documentation is often incomplete, and examples of specific
programming techniques can be hard to find.

